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1 Abstract

In this paper, Kepler’s three Laws of Planetary Motion are proven using New-
ton’s Law of Universal Gravitation. In addition, several results pertaining to
the orbital period of a satellite are derived. An equation for the velocity of a
satellite, as well as the minimum and maximum velocities necessary for a satel-
lite to stay in orbit are also derived. Finally, the anomalous orbit of Mercury is
examined using Newton’s Law of Universal Gravitation and Einstein’s Theory
of Relativity. This section assumes a basic familiarity with General Relativity
though a knowledge of tensor calculus is not required to follow the analysis of
Mercury’s orbit.

2 Introduction

For the past two millennia, people have endeavored to mathematically model
the motions of the planets. The goal of predicting these motions began with
the Greeks around 4 BC. Over the course of the last 2000 years, the model of
the universe has changed from geocentric to heliocentric to a universe in which
neither space nor time are constant and our Solar System is of little consequence
(Linton, 1).

The first significant challenge to the 1500 year old geocentric model of the
universe occured in 1543 when Nicholas Copernicus published On the Revolutions
of the Heavenly Spheres (Linton, 119). Thus began a period of rapid develop-
ment in mathematical astronomy. At the beginning of the 17th century, Jo-
hannes Kepler, using Tycho Brahe’s observational data and the Copernican
model of a heliocentric solar system, derived his laws of planetary motion (Lin-
ton, 177). These three laws are:

(1) A planet revolves in an elliptic path with the sun as one of the foci of the
ellipse

(2) The radius vector from the sun to a planet sweeps out equal areas in equal
intervals of time.

(3) The squares of the periods of revolution of the planets around the sun are
proportional to the cubes of their mean distances from the sun.
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The next significant development in mathematical astronomy was Issac New-
ton’s formulation of a law of attraction governing massive objects. Newton’s
masterpiece, the Mathematical Principles of Natural Philosophy, known as the
Principia was published in three volumes over a nearly 40 year period. In 1687,
Newton published the first volume which contained his three laws of motion:

(1) Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by
forces impressed upon it. (Inertia)

(2) A change is proportional to the motive force impressed and takes place
along the straight line in which that force is impressed. (F = ma)

(3) To any action there is always an opposite and equal reaction; in other
words, the actions of two bodies upon each other are always equal and
always opposite in direction. (Conservation of Motion) (Linton, 263).

In 1726, Newton published the third book of his Principia, which contained
his statement of the law of universal gravitation and the resulting motion of
planetary bodies in the solar system. Newton’s Law of Universal Gravitation
states

F =
GMm

r2

where G is the gravitational constant, M and m are the mass of each body, and
r is the distance between the centers of each mass. From this force law and his
laws of motion, Newton was able to prove Kepler’s laws of planetary motion
(Linton, 272).

Over the next 150 years, Newton’s Law of Universal Gravitation was shown,
with few exceptions, to adequately model the motions of the planetary bodies in
our solar system. Cheif among the problems with Newton’s Theory of Gravity,
was the discrepancy between the predicted and observed motion of Mecury. By
1850, tables of the motion of Mercury were still shockingly inaccurate relative to
the tables of the other planets, and the anomolous motion of Mercury became
a major problem in astronomy.

During this time, Urbain Jean Joseph Le Verrier began to work on the
problem of Mercury’s orbit. It was not until 1859 that Le Verrier was able to
correctly model the orbit of Mercury, although he could not explain the anomaly.
Le Verrier discovered that the error in predictions of Mercury’s orbit was a result
of the advance of its perihelion, the closest point on the orbit to the Sun. By
analyzing the effect of the other planets on the perihelion advance of Mercury,
Le Verrier discovered that the advance of the perihelion predicted by Newton’s
Theory of Gravity was less than the observed perihelion advance, although he
was unable to explain the cause of this anomaly (Roseveare, 20-37).

Though Le Verrier had successfully corrected the tables of Mercury’s orbit,
explaining the cause of this inconsistency would take another 50 years and a new
Theory of Gravity. In developing his Theories of Special and General Relativity,
Einstein was not immediately concerned with solving the anomalies of planetary
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motion. However, after developing the Theory of General Relativity, Einstein
realized that it explained the anomalous advance of Mercury’s perihelion. This
observational verification of General Relativity, as well as gravitational lensing
of light and gravitational redshift of light, proved valuable in cementing General
Relativity as a viable theory. In correcting the difference between the predicted
and observed advance of Mercury’s perihelion, Einstein brought to a close nearly
100 years of mathematical quarreling over the cause of Mercury’s anomalous
perihelion and changed our conception of the universe (Roseveare, 147-186).

In this paper, we replicate the work of Newton in proving Kepler’s three
Laws of Planetary Motion using Newton’s Law of Universal Gravitation. In
addition, we will also verify other minor results involving satellite orbit. We
also examine the differences in planetary orbits as predicted by Newton’s Law
of Universal Gravitation and Einstein’s Theory of Relativity.

3 Newton’s Law of Universal Gravitation

As previously mentioned, Newton’s Law of Universal Gravitation states that
the force governing two massive bodies is inversely proportional to the square
of the distance between their centers of mass and directly proportional to the
product of their masses. In mathematical terms, we have

F =
GMm

r2
(1)

where G is the gravitational constant, M and m are the masses of each body,
and r is the distance between the centers of each mass.

3.1 Kepler’s Laws

For the purpose of verifying Kepler’s Laws, we will find it useful to choose our
reference frame such that one of the objects is stationary. We choose the larger
mass M to be stationary and the smaller mass m to be in orbit around the
larger mass. In Cartesian coordinates, the position of mass m is given by (x, y).
The gravitational force is directed towards the origin, and has magnitude,

|~F | = GMm

x2 + y2
=
GMm

r2
. (2)

3.1.1 Dynamic Equations of Motion

We have that the gravitational force is given by

~F = −GMm

r2
r̂ = −GMm

r3
~r,
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where r̂ is the unit vector in the direction of ~r. If we resolve the force into the
x and y directions, we have

Fx = −GMm

r3
x and (3a)

Fy = −GMm

r3
y. (3b)

We apply Newton’s second law (F = ma) to each component, obtaining the
dynamic equations of motion for the satellite,

m
d2x

dt2
= −GMm

r3
x and (4a)

m
d2y

dt2
= −GMm

r3
y. (4b)

We cancel the mass of the satellite in both equations to obtain

d2x

dt2
= −GM

r3
x and (5a)

d2y

dt2
= −GM

r3
y. (5b)

3.1.2 Kepler’s First Law

We now prove that the shape of a closed orbit of a satellite around a planet is
elliptic. From equations 5a and 5b, we derive a formula for angular momentum.
We will show that this formula is equal to a constant, which implies that angular
momentum is conserved through a planet’s orbit. We multiply equation 5a by
y and 5b by x and subtract 5b from 5a yielding

x
d2y

dt2
− y d

2x

dt2
=

d

dt

(
x
dy

dt
− y dx

dt

)
=
GM

r3
xy − GM

r3
xy = 0. (6a)

Integrating with respect to t yields

x
dy

dt
− y dx

dt
= H (6b)

for some constant H. This result is the conservation of angular momentum
where H is the conserved value of angular momentum per unit mass of the
orbiting motion. We now multiply 5a by dx

dt and 5b by dy
dt and add them together

which yields

dx

dt

(
d2x

dt2

)
+
dy

dt

(
d2y

dt2

)
=
dx

dt

(
−GM

r3
x

)
+
dy

dt

(
−GM

r3
y

)
.

We can now rearrange terms on the right side of the equation

dx

dt

(
d2x

dt2

)
+
dy

dt

(
d2y

dt2

)
= −GM

r3

(
x
dx

dt
+ y

dy

dt

)
.
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For simplicity, in the right side of the equation, we can convert to polar coor-
dinates, such that x = r cos θ and y = r sin θ. Likewise, dx = cos θdr − r sin θdθ
and dy = sin θdr + r cos θdθ. Therefore, we have

dx

dt

(
d2x

dt2

)
+
dy

dt

(
d2y

dt2

)
=− GM

r3

[
r cos θ

(
cos θ

dr

dt
− r sin θ

dθ

dt

)
+ r sin θ

(
sin θ

dr

dt
+ r cos θ

dθ

dt

)]
=− GM

r3

[
r cos2 θ

dr

dt
+ r sin2 θ

dr

dt

]
.

This simplifies to

dx

dt

(
d2x

dt2

)
+
dy

dt

(
d2y

dt2

)
= −GM

r2
dr

dt
(7a)

Next, we rearrange the left side of Equation 7a, yielding

dx

dt

(
d

dt

dx

dt

)
+
dy

dt

(
d

dt

dy

dt

)
= −GM

r2
dr

dt
.

We recognize that the left side of the equation is the derivative of the sum of
the squares of the first derivatives of x and y. Using the Chain Rule, we find
we need a factor of 1

2 , and we now have

1
2
d

dt

[(
dx

dt

)2

+
(
dy

dt

)2
]

= −GM
r2

dr

dt
.

We can now integrate with respect to time, which produces

1
2

[(
dx

dt

)2

+
(
dy

dt

)2
]
− GM

r
= E, (7b)

for some constant E. We can see that the first terms of equation 7b is a statement
of kinetic energy per unit mass. In addition, the second term is a statement of
potential energy per unit mass. Thus the constant E represents the total energy
per unit mass. Thus total energy is conserved in the system. Because there are
no external forces on the two body system, conservation of energy is expected.

For convenience, we now convert equations 6b and 7b to polar coordinates.
The transformation of coordinates is given by

x = r cos θ and y = r sin θ (8a)

with the derivatives given by

dx = cos θdr − r sin θdθ and dy = sin θdr + r cos θ. (8b)
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We begin with equation 6b, we substitute for x and y, and rearrange terms.
We then have

r cos θ
(

sin θ
dr

dt
+ r cos θ

dθ

dt

)
− r sin θ

(
cos θ

dr

dt
− r sin θ

dθ

dt

)
= H

r2 cos2 θ
dθ

dt
+ r2 sin2 θ

dθ

dt
= H

r2
dθ

dt
= H. (9a)

Next we substitute for x and y in equation 7b which yields

1
2

[(
cos θ

dr

dt
− r sin θ

dθ

dt

)2

+
(

sin θ
dr

dt
+ r cos θ

dθ

dt

)2
]
− GM

r
= E

1
2

[
cos2 θ

(
dr

dt

)2

− 2r cos θ sin θ
dr

dt

dθ

dt
+ r2 sin2 θ

(
dθ

dt

)2
]

+
1
2

[
sin2 θ

(
dr

dt

)2

+ 2r cos θ sin θ
dr

dt

dθ

dt
+ r2 cos2 θ

(
dθ

dt

)2
]
− GM

r
= E

1
2

[(
dr

dt

)2

+ r2
(
dθ

dt

)2
]
− GM

r
= E. (9b)

We then take the initial position of the satellite to be r0 and the initial
velocity to be v0. We also define the angle between the initial position vector
and the initial velocity vector to be α.

Figure 1: Initial Conditions of Launching (Kwok)

Thus, for conservation of angular momentum, we have

H = r20

(
dθ

dt

)
t=0

= r0v0 sinα (10a)

and for conservation of energy, we have

E =
v2
0

2
− GM

r0
. (10b)
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Substituting these values into equations 9a and 9b, we find

r2
dθ

dt
= r0v0 sinα, and (11a)

(
dr

dt

)2

+ r2
(
dθ

dt

)2

= v2
0 + 2GM

(
1
r
− 1
r0

)
. (11b)

By eliminating dependence on t by using dr
dt = dr

dθ
dθ
dt , equation 11b can be

transformed to(
dr

dθ

)2(
dθ

dt

)2

+ r2
(
dθ

dt

)2

= v2
0 +

2GM
r
− 2GM

r0
.

We substitute Equation 11a for dθ
dt which yields(

dr

dθ

)2(
r0v0 sinα

r2

)2

+ r2
(
r0v0 sinα

r2

)2

= v2
0 +

2GM
r
− 2GM

r0
.

We then rearrange terms and solve for
(
dr
dθ

)2
to get.(

dr

dθ

)2

=
r4

r20v
2
0 sin2 α

(
v2
0 −

2GM
r0

+
2GM
r
− r20v

2
0 sin2 α

r2

)
.

We take the square root of both sides and simplify to solve for dr
dθ giving

dr

dθ
=

r2

r0v0 sinα

√
v2
0 −

2GM
r0

+
2GM
r
− r20v

2
0 sin2 α

r2
. (12a)

We now have a first order separable differential equation. We can begin the
arduous process of solving for θ in terms of r. It is advantageous to substitute
r = 1

z and thus dr = −dzz2 . We then have

− 1
z2

dz

dθ
=

1
v0r0z2 sinα

√(
v2
0 −

2GM
r0

)
+ 2GMz − v2

0r
2
0 sin2 αz2.

Solving for dθ yields

−dθ =
v0r0 sinαdz√(

v2
0 − 2GM

r0

)
+ 2GMz − v2

0r
2
0 sin2 αz2

. (12b)

We now complete the square in the denominator in order to substitute a trigono-
metric function before integrating. The complete derivation of this is included
in Appendix A, but can be ignored for continuity. From completing the square
in the denominator of equation 12b, we have
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−dθ =
v0r0 sinαdz√

(G2M2−2GMv20r0 sin2 α+v40r
2
0 sin2 α)

v20r
2
0 sin2 α

−
(
v0r0 sinαz − GM

v0r0 sinα

)2
. (12c)

We rearrange terms and find a suitable trigonometric substitution in order to
integrate. We rewrite equation 12c as

−dθ =
v0r0 sinαdz√

(G2M2−2GMv20r0 sin2 α+v40r
2
0 sin2 α)

v20r
2
0 sin2 α

√
1−

(
v20r

2
0 sin2 α

G2M2−2GMv20r0 sin2 α+v40r
2
0 sin2 α

)(
v0r0 sinαz − GM

v0r0 sinα

)2
.

We use the trigonometric substitution

v0r0 sinα√
G2M2 − 2GMv2

0r0 sin2 α+ v4
0r

2
0 sin2 α

(
v0r0 sinαz − GM

v0r0 sinα

)
= cosU

and consequently,

dz = −

√
G2M2 − 2GMv2

0r0 sin2 α+ v4
0r

2
0 sin2 α

v2
0r

2
0 sin2 α

sin(U)dU.

We then substitute into equation 12c, which yields

dθ =
sin(U)dU√
1− cos2(U)

= dU.

Integrating from θ0 to θ yields

U = θ − θ0.

We now reverse substitute for U. We know

U = arccos

 v0r0 sinα√
G2M2 − 2GMv2

0r0 sin2 α+ v4
0r

2
0 sin2 α

(
v0r0 sinαz − GM

v0r0 sinα

) .

Taking the cosine of both sides yields

cos(θ − θ0) =
v2
0r

2
0 sin2 α√

G2M2 − 2GMv2
0r0 sin2 α+ v4

0r
2
0 sin2 α

(
z − GM

v2
0r

2
0 sin2 α

)
.

We then solve for z. Rearranging terms yields

v0r0 sinαz =
GM

v0r0 sinα
+

√
v2
0 −

2GM
r0

+
G2M2

v2
0r

2
0 sin2 α

cos(θ − θ0).
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We substitute z = 1/r and solve for r yielding

r =
v0r0 sinα

GM
v0r0 sinα +

√
v2
0 − 2GM

r0
+ G2M2

v20r
2
0 sin2 α

cos(θ − θ0)
.

Finally, we can simplify and find

r =
v2
0r

2
0 sin2 α/GM

1 + v0r0 sinα
GM

√
v2
0 − 2GM

r0
+ G2M2

v20r
2
0 sin2 α

cos(θ − θ0)
. (13)

We now have the orbital path in polar form, r as a function of θ. To understand
this orbital path geometrically, we would like to associate the solution with the
equation of a conic section. In polar form, the equation of a conic section is

r =
pe

1 + e cos θ
, (14)

where e is the eccentricity of the conic and p is the distance from the focus to
the directrix. The conic is an ellipse when e < 1, a parabola when e = 1, and a
hyperbola when e > 1.

Figure 2: Elliptical Orbit of a Planet about the Sun

Comparing equations 13 and 14 and taking θ0 = 0 (the geometric interpre-
tation of this is that the initial position vector lies along the x-axis), we find
that

e =

√
1− v2

0r
2
0 sin2 α

G2M2

(
2GM
r0
− v2

0

)
, (15a)

pe =
v2
0r

2
0 sin2 α

G2M2
(15b)

We now have that the solution of the orbital path of a satellite is a conic section
with the type of orbit (i.e. elliptic, parabolic, or hyperbolic) governed by the
eccentricity e. Of these orbits, the only closed orbit is elliptic, and thus we have
Kepler’s First Law: a planet revolves in elliptic path with the sun as one of the
foci of the ellipse.
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3.1.3 Kepler’s Second Law

We now prove Kepler’s Second Law, which states that the radius vector from
the sun to a planet sweeps out equal areas in equal intervals of time. As we
seen in Figure 1, the physical manifestation of this property is that the satellite
has the greatest velocity when it is closest to the central mass and least velocity
when it is furthest from the central mass.

Figure 3: Kepler’s Second Law (Wikipedia)

We have already defined ~r as the vector from the central mass to the satellite
and additionally we say r = |~r|. We now let d~r be the vector tangent to the
orbit over which the satellite moves in time dt. Thus,

dA =
1
2
|~r × d~r|.

or equivalently

dA =
1
2
|~r × ~rdθ

dt
dt|.

We simplify to get
dA

dt
=

1
2
|~r × ~r|dθ

dt
=

1
2
|~r||~r|dθ

dt
.

Thus,
dA

dt
=

1
2
r2
dθ

dt
.

But from Equation 9a, we know

r2
dθ

dt
= H.

Thus,
dA

dt
=
H

2
and as a satellite moves around an object, the position vector ~r sweeps out equal
areas in equal times. In addition, we see that Kepler’s Second Law is simply
another way of describing conservation of angular momentum.
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3.1.4 Kepler’s Third Law

Finally, we prove Kepler’s Third Law, which states the squares of the periods of
revolution of the planets around the sun are proportional to the cubes of their
mean distances from the sun. Using Kepler’s Second Law and equation 10a, we
have

dA

dt
=

1
2
r2
dθ

dt
=
H

2
=

1
2
r0v0 sinα. (16)

In Section 2.2, we showed that the path of a revolving satellite is elliptic.
We also know that the area of an ellipse is πab, where a and b are the lengths
of the semi-major axis and semi-minor axis respectively. To find the period of
revolution T , we integrate equation 16 from t = 0 to t = T yielding

πab = A(T )−A(0) =
∫ T

0

dA

dt
dt

=
∫ T

0

1
2
r0v0 sinαdt

=
1
2
r0v0 sinαT. (17)

From our initial conditions for deriving the orbital path and Equation 15b,
we have that rmin = pe/(1 + e) occurs when θ = 0 and the maximum value
rmax = pe/(1 − e) occurs when θ = π. Therefore the length of the semi-major
axis, a is

a =
max + min

2
=

pe

1− e2
=

GM
2GM
r0
− v2

0

(18a)

and similarly, the length of the semi-major axis is

b =
max−min

2
= a

√
1− e2 =

v0r0 sinα√
2GM
r0
− v2

0

. (18b)

We can now substitute equations 18a and 18b into equation 17, and obtain the
period of revolution of the elliptic path of a orbiting satellite,

T =
2πGM(

2GM
r0
− v2

)3/2
=

2πa3/2

√
GM

(19)

or, to match the wording of the Third Law,

T 2 =
4π2a3

GM
.

Thus we have Kepler’s Third Law: the square of the period of revolution of a
planet around the sun is proportional to the cube of the mean distance from
the sun.

11



3.1.5 Orbital Period

We now examine the orbital period of a satellite. We wish to express the time t in
terms of the angular displacement θ. We cover the major steps of this derivation
here, while the complete derivation is included in Appendix B. We begin with
the statement of conservation of angular momentum in polar coordinates using
the initial conditions. We have

r2
dθ

dt
= r0v0 sinα.

We then use the equation for position r in terms of θ,

r =
v2
0r

2
0 sin2 α/GM

1 + v0r0 sinα
GM

√
v2
0 − 2GM

r0
+ G2M2

v20r
2
0 sin2 α

cos(θ − θ0)
.

Substituting for r and rearranging terms yields

dt =
v3
0r

3
0 sin3 αdθ

G2M2

(
1 +

√
1− v20r

2
0 sin2 α
G2M2

(
2GM
r0
− v2

0

)
cos(θ − θ0)

)2 .

We integrate from 0 to θ and take θ0 = 0, and α = 0, meaning the initial
position is at the perihelion. We have

t =
∫ θ

0

v3
0r

3
0dθ

G2M2

(
1 +

√
1− v20r

2
0 sin2 α
G2M2

(
2GM
r0
− v2

0

)
cos(θ)

)2 .

From our definition of eccentricity, e, we have

t =
∫ θ

0

v3
0r

3
0dθ

G2M2 (1 + e cos(θ))2
.

In order to evaluate this integral, We begin by multiplying by (1−e2)
(1−e2) and

our integral becomes

t =
v3
0r

3
0

G2M2(1− e2)

∫ θ

0

(1− e2)dθ
(1 + e cos(θ))2

.

We now utilize the Weierstrass Substitution

U = tan
(
θ

2

)
.

Using properties of trigonometric functions, we find

cos θ =
1− U2

1 + U2
and sin θ =

2U
1 + U2

.

12



We also find
dθ =

2
1 + U2

dU.

We substitute these into our integral to get

v3
0r

3
0

G2M2(1− e2)

∫
2(1− e2)dU[

1 + e
(

1−U2

1+U2

)]2
(1 + U2)

.

This integral is equivalent to

v3
0r

3
0

G2M2(1− e2)

∫
−2e(1 + e) + 2e(1− e)U2

[(1 + e) + (1− e)U2]2
dU+

v3
0r

3
0

G2M2(1− e2)

∫
2

(1 + e) + (1− e)U2
dU.

We integrate the first term by reversing the Weierstass substitution and
subsequently using integration by parts. The second term is integrated by using
another trigonometric substitution. We are then left with

t =
v3
0r

3
0

G2M2

∫ θ

0

dθ

(1 + e cos(θ))2

=
v3
0r

3
0

G2M2(1− e2)

[
−e sin θ

1 + e cos θ
+

2√
1− e2

tan−1

[√
1− e
1 + e

tan
(
θ

2

)]
+ nT

]
,

where T is the period of the orbit, given by

T =
2πa3/2

√
GM

and n is the number of complete revolutions the planet has made, or for φ > 2π,
φ = θ + 2πn. Thus, the nT term accounts for the planet moving through more
than one complete orbit. As previously mentioned, the complete derivation of
this equation is presented in Appendix B.

3.2 The Cosmic Velocities

Now that we have proven Kepler’s Laws, we would like to explore some other
results governing orbits. We begin by finding an equation for the velocity of a
satellite at any position r. In our orbital system, we know that the total energy
E, given in the equation,

1
2

[(
dr

dt

)2

+ r2
(
dθ

dt

)2
]
− GM

r
= E,

is constant by the principle of conservation of energy. The first term of this
equation is the kinetic energy of the system, and the second term is the potential
energy. We can now show that the type of orbit is dependent on the total energy
of the system. We begin by recognizing that the square of the velocity is equal
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to the sum of the squares of the radial and angular components of the velocity.
We have (

dr

dt

)2

+ r2
(
dθ

dt

)2

= v2,

or equivalently,

v2 =
2GM
r

+ 2E.

We then recall equation 15a

e =

√
1− v2

0r
2
0 sin2 α

G2M2

(
2GM
r0
− v2

0

)
.

Substituting our equation for velocity into the previous equation, we have

e =

√
1 +

2v2
0r

2
0 sin2 α

G2M2
E.

We can now compare the three conditions, E = 0, E < 0, and E > 0. When
E = 0, we have e = 1, and thus the orbit is parabolic. The condition in
which E = 0 means that the kinetic energy is equal to the potential energy,
which in physical terms means that the object has the minimum amount of
energy necessary to escape orbit. Because every term in the coefficient of E is
squared, we know the coefficient is positive. Thus, for E < 0, we have e < 1
and thus the orbit is elliptic. The object does not have sufficient kinetic energy
to escape orbit. Similarly, for E > 0, we have e > 1 and therefore the orbit is
hyperbolic. Because the kinetic energy is greater than the potential energy, the
object escapes a closed orbit.

We now move on to orbital speed. We have previously established that(
dr

dt

)2

+ r2
(
dθ

dt

)2

= v2
0 + 2GM

(
1
r
− 1
r0

)
.

This is equivalent to

v2 = v2
0 + 2GM

(
1
r
− 1
r0

)
which gives velocity in terms of the initial conditions and the current position.
We have also previously shown that

a =
GM

2GM
r0
− v2

0

.

Rearranging terms yields,

v2
0 =

2GM
r0
− GM

a
.
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Substituting this statement of our initial conditions into our equation for velocity
in terms of r yields

v2 =
2GM
r0
− GM

a
+

2GM
r
− 2GM

r0
= GM

(
2
r
− 1
a

)
,

or equivalently,

v =

√
GM

(
2
r
− 1
a

)
.

Thus we have an expression for the velocity of a satellite at any position r. We
can also see that if a = r, a circular orbit, that

v2 =
GM

r
.

We now demonstrate that the initial propulsion speed v0 of a satellite launched
from the Earth’s surface has to fall within a certain range in order for the satel-
lite to remain in orbit, which is to say, neither hit the surface of the earth,
nor move out of the earth’s gravitational field. We know from the definition of
conic sections, that the size of e in the equation 14 determines the shape of the
orbit. We can see from equation 15b that the sign of quantity (v2

0 − 2GM/r0)
determines whether e is less than, equal to, or greater than 1. We can then
define v∗0 as the velocity when e = 1, or

v∗0 =
√

2GM
r0

=

√
2gR2

r0
=
√
R

r0

√
2gR, (20)

where g = GM
R2 . From equation 15a we can see that when the velocity is less

than the minimum initial velocity, v < v∗0 , then e < 1 and the object will either
fall back to Earth or orbit elliptically. If v = v∗0 , then e = 1 and the object
will follow a parabolic path, having just enough energy to escape the Earth’s
gravitational field. Finally, if v > v∗0 , then e > 1 and the orbit will be hyperbolic,
with the object also escaping the Earth’s gravitational field.

We now know that v0 must be less than
√

R
r0

√
2gR in order for a satellite to

stay within the gravitational field of the earth. We derive the minimum velocity
necessary for the satellite to stay in orbit. Thus, we are limited by rmin = r0,
the point at which the satellite collides with the surface of the earth. We know
rmin = pe/(1 + e) and, using equations 15a and 15b, we have

r0 =
1

1 + e

v2
0r

2
0 sin2 α

GM
, (21a)

which is equivalent to

v2
0r

2
0 sin2 α

GM
− 1 =

√
1− v2

0r
2
0 sin2 α

G2M2

(
2GM
r0
− v2

0

)
. (21b)
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The left hand side of equation 21b is always nonnegative, so we have

v0 ≥
√
GM

r0
cscα ≥

√
GM

r0
=
√
R

r0

√
gR. (22)

Thus we have that the initial speed v0 of a projectile launched from the
surface of the earth must fall within the range,√

R

r0

√
gR ≤ v0 ≤

√
R

r0

√
2gR, r0 > R. (23)

Finally, if we square both sides of equation 21b, we find that sinα = 1 and
thus α = π/2. This means that at rmin, the angle between the position vector
and the velocity vector is π/2. Thus, the point where the satellite is closest to
the earth occurs along the major axis. If the satellite is launched with minimum
velocity from this point, the satellite will be further from the earth than rmin

for all other points along its orbit.
We now examine an alternative method for deriving the second cosmic ve-

locity, that is the maximum initial velocity an object can be launched from the
surface of a planet and remain in orbit. We previously established that for an
object launched from the planet’s surface to remain in orbit,√

gR < v0 <
√

2gR.

The alternative approach is to find the minimum velocity such that the object
will leave the planet and never return, which is to say that as r increases without
bound, the velocity remains nonnegative.

We know from F = ma, that

d2y(t)
dt2

= −GM
r2

.

If we define r = R + y(t) such that R is the radius of the planet and y(t) is
the altitude of the object above the surface of the planet, then our previous
equation becomes

d2y(t)
dt2

= − R2g

[R+ y(t)]2
. (24a)

We can now rearrange terms and solve for the velocity of the object in terms
of its height above the surface of the planet. We can rewrite equation 24a as

d[v(t)]
dt

= − R2g

[R+ y(t)]2
. (24b)

Rearranging terms and multiplying each side of equation 24b by v yields

vdv = −R2g · vdt

[R+ y(t)]2
. (25a)
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We can now use the substitution U = R+ y(t) and thus dU = vdt to get

vdv = −R2g · dU
U2

, (25b)

or ∫ v

v0

vdv =
∫ y(t)−R

R

−R2g · dU
U2

. (25c)

Evaluating this integral, we have

1
2

(v2 − v2
0) = R2g

1
U

= R2g
1

R+ y(t)

∣∣∣y(t)
0

. (26a)

This simplifies to

v(t)2 = v2
0 + 2R2g

[
1

R+ y(t)
− 1
R

]
. (26b)

As previously stated, the minimum velocity such that the object never returns
to the planet occurs when the velocity reaches zero as y(t) → ∞. In equation
26b, if we let y(t)→∞, we have

v2
∞ = v2

0 + 2R2g

[
0− 1

R

]
,

where v∞ is the velocity when y(t) is arbitrarily large. We simplify the previous
equation to

v2
∞ = v2

0 − 2Rg.

If v∞ > 0 at this point, the object will leave earth. Thus we have

0 < v2
0 − 2Rg,

or
v0 >

√
2Rg.

Thus we have verified that the second cosmic velocity is v0 =
√

2Rg.

4 Einstein’s Theory of General Relativity

4.1 The Anomalous Advance of Mercury’s Perihelion

For nearly two hundred years after Newton’s Principia was published, the in-
verse square law was the accepted method by which to model the motions of the
planets and their satellites. Newton’s Law of Universal Gravitation was even
used by Urbain Jean Joseph Le Verrier to predict the existence of Neptune.
By the mid 19th century, however, problems began to arise, most notably with
predictions of the orbit of Mercury. As Le Verrier began his work on the orbit
of Mercury, the errors in the prediction of Mercury’s orbit were so large that
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there was nearly an hour between the predicted and actual start of transit, the
time at which Mercury passes in front of the sun and so can be clearly seen and
an accurate position recorded. By 1845, Le Verrier had reduced this error to 16
seconds, which was still unacceptable in comparison to the predicted orbits of
other planets (Linton, 437).

Le Verrier discovered that the error in predictions of Mercury’s orbit was
a result of the advance of its perihelion, the closest point on the orbit to the
Sun. By analyzing the effect of the other planets on the perihelion advance,
Le Verrier discovered that Mercury’s perihelion advanced by 565” per century
rather than the 527” predicted by Newtonian mechanics. Despite this discovery,
Le Verrier was unable to explain the cause of the anomalous 38”. (Roseveare,
20-37).

Figure 4: Perihelion Advance (Cornell)

Though the problem of Mercury’s orbit was problematic for Newton’s Law of
Universal Gravitation, the scientific community was not yet willing to question
the dogma of Newtonian mechanics. Instead other causes of Mercury’s perihe-
lion advance were investigated. Based on the success of Le Verrier’s prediction
of the existence and position of Neptune, similar techniques were employed in
hopes of discovering a planet between the sun and mercury that could be effect-
ing the orbit. This hypothetical planet, deemed Vulcan, was “observed” many
times during the second half of the 19th century, though each discovery was
subsequently discredited (Linton, 441). Alternative hypotheses included that
the sun was oblate, as well as effects from the ether, the medium through which
light was thought to travel.

Though models of Mercury’s orbit were now mathematically accurate, deter-
mining the cause of the anomaly would require a shift in the way we conceived of
space and time. Shortly after the start of the 20th century, Einstein had already
published his theory of special relativity, which held that “the laws of physics
are of the same form in all inertial frames, and that in any given inertial frame,
the speed of light is the same whether the source is at rest or in uniform motion”
(Linton, 454). In response, the mathematician Hermann Minkowski translated
special relativity into a geometric framework, and as such created the concept
of four-dimensional spacetime. Within special relativity, which is to say in the
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absence of a massive object, spacetime, as a four-dimensional Euclidean space,
can be thought of as ‘flat.’ Any object moving through this flat spacetime takes
the shortest path and thus travels in a straight line. In developing general rel-
ativity, Einstein postulated that mass had the effect of deforming Minkowskian
spacetime. An object moving through this deformed space time will still take
the shortest path possible, leading to the elliptical orbit of a planet (Linton,
463). The two-dimensional analog of this can be seen in Figure 3, mass deforms
flat space time and causes the trajectory of the moving mass to curve.

Figure 5: Mass deforms space time (Carroll)

Unfortunately the mathematical underpinnings of these concepts require a
knowledge of tensor calculus and are thus beyond the scope of this paper. Rather
we will begin with the general relativistic analog of the classical angular mo-
mentum and energy equation (previously defined as 11b) derived by simplifying
the spherically symmetric Swcharzchild solution to Einstein’s field equations.

After developing his gravitational theory, Einstein soon realized that it ex-
plained the anomalous advance of Mercury’s perihelion. In correcting the dif-
ference between the predicted and observed advance of Mercury’s perihelion,
Einstein brought to a close nearly 100 years of mathematical quarreling over
the cause of Mercury’s anomalous perihelion and changed our conception of the
universe (Roseveare, 147-186).

4.2 Relativistic Angular Momentum and Energy

In order to investigate the effect of General Relativity on the orbit of Mercury, we
must investigate the general-relativity analog of the previously stated classical
angular momentum and energy equation given by(

dr

dt

)2

+ r2
(
dφ

dt

)2

= v2
0 + 2GM

(
1
r
− 1
r0

)
. (11b)
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We let E be a constant related to the energy of the orbit and given by

E =
v2
0

2
− GM

r0
.

Substituting this into Equation 11b yields(
dr

dφ

)2(
dφ

dt

)2

+ r2
(
dφ

dt

)2

= 2Eh2 +
2GM
r

. (27a)

We also have h, the angular momentum per unit mass given by

h = r2
(
dφ

dt

)
.

Dividing by h2, we have

1
r4

(
dr

dφ

)2

+
1
r2

=
2E
h2

+
2GM/r

r4
(
dφ
dt

)2 . (27b)

Because energy and angular momentum are conserved, 2E
h2 is a constant which,

for simplicity, we will call E0 and thus we have

1
r4

(
dr

dφ

)2

+
1
r2

= E0 +
2GM/r

r4
(
dφ
dt

)2 . (27c)

We then introduce the substitution u = 1
r , and thus du = −drr2 . This yields(

du

dφ

)2

+ u2 = E0 +
2GM
h2

u. (27d)

This is the classical angular momentum and energy equation. In solving Ein-
stein’s field equations, which is beyond the scope of this project, a general
relativistic analog of the previous equation is derived. We find that the gen-
eral relativistic equation is the classical equation with another term, equal to
2GMu3/c2. We expect that this term will change the orbit of a satellite from
pure Keplerian motion. We then have the equation(

du

dφ

)2

+ u2 = E0 +
2GM
h2

u+
2GMu3

c2
. (28a)

The quantity 2GM/c2 is small compared to the radius of planetary orbits. We
can denote this quantity as ε, and we have(

du

dφ

)2

+ u2 = E0 +
2GM
h2

u+ εu3. (28b)
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Aphelion and Perihelion occur where du/dφ = 0, and thus we have

εu3 − u2 +
(

2GM
h2

)
u+ E0 = 0. (29)

This cubic equation then has three roots, let them be denoted u1, u2, and u3.
Because ε is small, unless u is large, the roots will be close to the roots of the
analogous classical equation

u2 −
(

2GM
h2

)
u− E0 = 0.

Thus, we say u1 and u2 are close to the roots of the Newtonian model and thus
we let u1 be the aphelion and u2 be the perihelion. Thus we know u1 ≤ u ≤ u2.
We also know that u1 + u2 + u3 = 1/ε. For a proof of this see appendix C.
Because 1/ε is large, u3 is also large and thus has no physical meaning in our
model. Substituting our solution for equation 29 into equation 28a, we have

du

dφ
= [ε(u− u1)(u2 − u)(u3 − u)]

1
2 . (30a)

Rearranging terms, we have

du

dφ
= [[(u− u1)(u2 − u)(ε(u3 − u))]

1
2 .

We then rewrite this as

du

dφ
= [[(u− u1)(u2 − u)(ε(u1 − u1 + u2 − u2 + u3 − u))]

1
2 .

We then group terms such that

du

dφ
= [[(u− u1)(u2 − u)(ε(u1 + u2 + u3)− ε(u1 + u2 + u)))]

1
2 .

We can cancel ε and u1 + u2 + u3. This yields

du

dφ
= [[(u− u1)(u2 − u)(1− ε(u1 + u2 + u)))]

1
2 .

In terms of dφ/du, we have

dφ

du
=

1
[(u− u1)(u2 − u)]1/2

[1− ε(u1 + u2 + u)]−1/2. (30b)

Using the first order approximation from the Taylor expansion, (1 + x)k =
1 + kx, we have

dφ

du
≈

1 + 1
2ε(u1 + u2 + u)

[(u− u1)(u2 − u)]1/2
. (30c)
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We now let α = 1
2 (u1 + u2) and β = 1

2 (u2 − u1). We then have

dφ

du
=

1 + 1
2ε(2α+ u)

[−u2 + (u1 + u2)u− u1u2]1/2
.

This is equivalent to

dφ

du
=

1 + 1
2ε(2α+ u)

[ 14 (u2
2 − 2u1u2 + u2

1)− u2 + (u1 + u2)u− 1
4 (u2

1 + 2u1u2 + u2
2)]1/2

.

This reduces to
dφ

du
=

1 + 1
2ε(2α+ u)

[β2 − (u− α)2]1/2
. (31a)

Integrating equation 31 with respect to u from u1 to u2 allows us to find the
angle between an aphelion and the subsequent perihelion. We have

∆φ =
∫ u2

u1

1 + 1
2ε(2α+ u)

[β2 − (u− α)2]1/2
du. (31b)

Rearranging terms, we have

∆φ =
∫ u2

u1

1
2ε(u− α) + 1 + 3

2εα

[β2 − (u− α)2]1/2
du.

We can split the integral into two terms such that,

∆φ =
1
2
ε

∫ u2

u1

(u− α)
[β2 − (u− α)2]1/2

du+
∫ u2

u1

1 + 3
2εα

[β2 − (u− α)2]1/2
du.

The first term is relatively easy to integrate and we simply have

1
2
ε

∫ u2

u1

(u− α)
[β2 − (u− α)2]1/2

du = −1
2
ε(β2 − (u− α)2)1/2|u2

u1
.

This yields

1
2
ε

∫ u2

u1

(u− α)
[β2 − (u− α)2]1/2

du =− 1
2
ε

(
(u2 − u1)2

4
− (u2 −

1
2

(u2 + u1))
)2

+
1
2
ε

(
(u2 − u1)2

4
− (u1 −

1
2

(u2 + u1))
)2

.

This simplifies to
1
2
ε

∫ u2

u1

(u− α)
[β2 − (u− α)2]1/2

du = 0.

For the second term, we have∫ u2

u1

1 + 3
2εα

[β2 − (u− α)2]1/2
du =

[
(1 +

3
2
εα) arcsin

(
u− α
β

)]u2

u1

= (1 +
3
2
εα)π.
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Doubling ∆φ and subtracting 2π gives the angle between successive perihelions.
We then have that each orbit advances the perihelion by

φ = 3εαπ =
3GMπ

c2
(u1 + u2) =

3GMπ

c2

(
1
r1

+
1
r2

)
, (32)

where r1 and r2 are the values of r at aphelion and perihelion. In the case of
Mercury, r1 and r2 are small compared to orbital radii of the other planets.
As a result, Mercury has a larger perihelion advance then the other planets..
In addition, because the orbit of Mercury is more elliptical than the orbits of
most of the other planets, aphelion and perihelion are easier to observe. For
Mercury, the advancement of perihelion works out to about 43” per century.
While small, it is enough to be observed, and previous to Einstein’s Theory of
General Relativity, was unexplainable.

5 Conclusion

In this paper, we began by verifying Kepler’s Laws of Planetary Motion using
Newton’s Law of Universal Gravitation. We then derived several results per-
taining to the orbital period of a satellite, including solving for orbital period in
terms of angular displacement. We then derived an equation for the velocity of a
satellite, as well as the cosmic velocities, the minimum and maximum velocities
necessary for a satellite to stay in orbit. Finally, we examined the anomalous
orbit of Mercury using Newton’s Law of Universal Gravitation and Einstein’s
Theory of Relativity.

In our use of classical mechanics in exploring planetary motion, we assumed
several things. First, we assumed that we have a two-body system, using the
example of a satellite orbiting Earth. In reality, a massive body’s orbit is per-
turbed by the gravitational attraction to any other mass in its vicinity. Thus,
the orbits of the planets are not simply two-body systems with a given planet
orbiting the Sun, rather the orbit of each planet is affected by the other plan-
ets. Unfortunately, this multiple-body problem is very complicated and must
be modeled numerically. Fortunately, the Sun is vastly more massive than the
planets and thus the two-body model is a reasonable approximation. Our second
assumption was that the Earth is is a homogeneous sphere rather than a hetero-
geneous ellipsoid. The ellipsoidal shape of the Earth causes small perturbations
of the elliptic path of a satellite.

Additional considerations include that the perihelion advance of Mercury’s
orbit is not simply due to the effects of General Relativity. The gravitational
effects of other planets, as well as the fact that we are observing Mercury from
a moving platform, contribute to Mercury’s perihelion advance. In our analysis
we simply derived the additional orbital advance that was discovered by Le
Verrier and explained by General Relativity.

Our analysis also assumes no knowledge of tensor calculus in the deriva-
tion of Mercury’s perihelion advance from the relativistic angular momentum
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and energy equation. Given an understanding of tensor calculus, the angular
momentum and energy equation can be derived from Einstein’s field equations.

Reasonable areas for further work would be deriving additional results per-
taining to the orbits of individual satellites as well as analysis of the three-body
problem. A useful resource for additional work in this area is Solar System
Dynamics by Carl D. Murray and Stanley F. Dermott. Given an understanding
of tensor calculus, the angular momentum and energy equation could also be
derived, as well as other results in General Relativity. A useful resource for addi-
tional work in this area is A Short Course in General Relativity as referenced in
the bibliography. Further information on the historical context of the mathemat-
ics covered in the paper can be found in From Eudoxus to Einstein: A History
of Mathematical Astronomy as referenced in the bibliography.
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6 Appendices

6.1 Appendix A

On page 7, we used the standard process of completing the square to transform
equation 12b into equation 12c. The full derivation is given here. We begin
with equation 12b

−dθ =
v0r0 sinαdz√(

v2
0 − 2GM

r0

)
+ 2GMz − v2

0r
2
0 sin2 αz2

. (12b)

The denominator is

(v2
0r

2
0 sin2 α)z2 − (2GM)z +

(
2GM
r0
− v2

0

)
.

This is equivalent to(
v0r0 sinαz − GM

v0r0 sinα

)2

+ C,

where C is some constant that we will determine. We then expand the above
statement, yielding

(v2
0r

2
0 sin2 α)z2 − (2GM)z +

G2M2

v2
0r

2
0 sin2 α

+ C.

Equating this statement with the square of the denominator of equation 12b
and simplifying we have

G2M2

v2
0r

2
0 sin2 α

+ C =
2GM
r0
− v2

0 .

Solving for C, we have

C =
2GM
r0
− v2

0 −
G2M2

v2
0r

2
0 sin2 α

.

We then find a common denominator, which gives us

C =
2GMv2

0r0 sin2 α− v4
0r

2
0 sin2 α−G2M2

v2
0r

2
0 sin2 α

.

Thus equation 12b becomes

−dθ =
v0r0 sinαdz√

(G2M2−2GMv20r0 sin2 α+v40r
2
0 sin2 α)

v20r
2
0 sin2 α

−
(
v0r0 sinαz − GM

v0r0 sinα

)2
. (12c)
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6.2 Appendix B

In section 2.1.5, we examined the orbital period of a satellite and found an
equation for the time t in terms of the angular displacement θ. The complete
derivation is presented here. We begin with the statement of conservation of
angular momentum in polar coordinates using the initial conditions. We have

r2
dθ

dt
= r0v0 sinα.

We then use the equation for position r in terms of θ,

r =
v2
0r

2
0 sin2 α/GM

1 + v0r0 sinα
GM

√
v2
0 − 2GM

r0
+ G2M2

v20r
2
0 sin2 α

cos(θ − θ0)
.

Substituting for r yields v4
0r

4
0 sin4 α/G2M2(

1 + v0r0 sinα
GM

√
v2
0 − 2GM

r0
+ G2M2

v20r
2
0 sin2 α

cos(θ − θ0)
)2

 dθ
dt

= r0v0 sinα.

Rearranging terms, we have

dt =
v3
0r

3
0 sin3 αdθ

G2M2
(

1 + v0r0 sinα
GM

√
v2
0 − 2GM

r0
+ G2M2

v20r
2
0 sin2 α

cos(θ − θ0)
)2 .

Again we rearrange terms, which yields

dt =
v3
0r

3
0 sin3 αdθ

G2M2

(
1 +

√
v40r

2
0 sin2 α
G2M2 − 2v20r0 sin2 α

GM + 1 cos(θ − θ0)
)2 .

This is equivalent to

dt =
v3
0r

3
0 sin3 αdθ

G2M2

(
1 +

√
1− v20r

2
0 sin2 α
G2M2

(
2GM
r0
− v2

0

)
cos(θ − θ0)

)2 .

For θ0 = 0, and α = 0, meaning the initial position is the perihelion, we have

t =
∫ θ

0

v3
0r

3
0dθ

G2M2

(
1 +

√
1− v20r

2
0 sin2 α
G2M2

(
2GM
r0
− v2

0

)
cos(θ)

)2 .

From our definition of eccentricity, e, we finally have

t =
∫ θ

0

v3
0r

3
0dθ

G2M2 (1 + e cos(θ))2
.
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In order to evaluate this integral, We begin by multiplying by (1−e2)
(1−e2) such

that our integral becomes

t =
v3
0r

3
0

G2M2(1− e2)

∫ θ

0

(1− e2)dθ
(1 + e cos(θ))2

.

We now utilize the Weierstrass Substitution such that

U = tan
(
θ

2

)
.

We can use properties of trigonometric functions to find expressions for
cos(θ), sin(θ), and dθ. We begin with cos θ and we know that

U2 =
1− cos θ
1 + cos θ

.

We now rewrite this equation, and we have

U2 + U2 cos θ = 1− cos θ
cos θ + U2 cos θ = 1− U2

(1 + U2) cos θ = 1− U2

cos θ =
1− U2

1 + U2

To find an expression for sin θ, we begin with

sin2 θ = 1− cos2 θ

sin2 θ = 1−
(

1− U2

1 + U2

)2

sin2 θ =
1 + 2U2 + U2

(1 + U2)2
− 1− 2U2 + U2

(1 + U2)2

sin2 θ =
4U2

(1 + U2)2

and we have
sin θ =

2U
1 + U2

.

To find dθ, we can use the derivative of sin θ. We then have

cos θdθ =
(1 + U2) · 2− (2U)(2U)

(1 + U2)2
dU.

We then have

dθ =
(1 + U2) · 2− (2U)(2U)

(1 + U2)2
1 + U2

1− U2
dU.
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This simplifies to

dθ =
2

1 + U2
dU.

We can now substitute into our integral. This yields

v3
0r

3
0

G2M2(1− e2)

∫
2(1− e2)dU[

1 + e
(

1−U2

1+U2

)]2
(1 + U2)

.

Rearranging terms, we have

v3
0r

3
0

G2M2(1− e2)

∫
2(1− e2)dU[

(1+U2)+e(1−U2)
1+U2

]2
(1 + U2)

.

This simplifies to

v3
0r

3
0

G2M2(1− e2)

∫
2(1− e2)(1 + U2)dU
[(1 + e) + (1− e)U2]2

.

Expanding the numerator, we have

v3
0r

3
0

G2M2(1− e2)

∫
2(1− e2 + U2 − e2U2)dU

[(1 + e) + (1− e)U2]2
.

We can rewrite the numerator, yielding

v3
0r

3
0

G2M2(1− e2)

∫
2(1− e2) + 2(1− e2)U2

[(1 + e) + (1− e)U2]2
dU.

Factoring yields

v3
0r

3
0

G2M2(1− e2)

∫
2(1 + e)(1− e) + 2(1 + e)(1− e)U2

[(1 + e) + (1− e)U2]2
dU.

We now rewrite the numerator as

v3
0r

3
0

G2M2(1− e2)

∫
−2e(1 + e) + 2(1 + e) + 2e(1− e)U2 + 2(1− e)U2

[(1 + e) + (1− e)U2]2
dU.

We can now separate this into two terms

v3
0r

3
0

G2M2(1− e2)

∫
−2e(1 + e) + 2e(1− e)U2

[(1 + e) + (1− e)U2]2
dU+

v3
0r

3
0

G2M2(1− e2)

∫
2(1 + e) + 2(1− e)U2

[(1 + e) + (1− e)U2]2
dU.

The second term reduces, and we have

v3
0r

3
0

G2M2(1− e2)

∫
−2e(1 + e) + 2e(1− e)U2

[(1 + e) + (1− e)U2]2
dU+

v3
0r

3
0

G2M2(1− e2)

∫
2

(1 + e) + (1− e)U2
dU.
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We begin by integrating the first term,

v3
0r

3
0

G2M2(1− e2)

∫
−2e(1 + e) + 2e(1− e)U2

[(1 + e) + (1− e)U2]2
dU.

We rewrite this as

=
v3
0r

3
0

G2M2(1− e2)

∫
−2e[(1 + e)− (1− e)U2]

[(1 + e) + (1− e)U2]2

(
1 + U2

2

)(
2

1 + U2

)
dU.

Expanding the numerator, we have

=
v3
0r

3
0

G2M2(1− e2)

∫
−e[(1 + e) + (1 + e)U2 − (1− e)U2 − (1− e)U4]

[(1 + e) + (1− e)U2]2

(
2

1 + U2
dU

)
.

This is equivalent to

=
v3
0r

3
0

G2M2(1− e2)

∫
−e[(1 + e) + U2 + 2eU2 − U2 − (1− e)U4]

[(1 + e) + (1− e)U2]2

(
2

1 + U2
dU

)
.

Rearranging terms in the numerator yields

=
v3
0r

3
0

G2M2(1− e2)

∫
−e[(1− U4) + e− 2eU2 + eU4 + 4eU2]

[(1 + e) + (1− e)U2]2

(
2

1 + U2
dU

)
.

We now factor terms in the numerator and have

=
v3
0r

3
0

G2M2(1− e2)

∫
−e(1− U2)(1 + U2)− e2(1− U2)(1− U2)− e(2U)2

[(1 + e) + (1− e)U2]2

(
2

1 + U2
dU

)
.

We now multiply by
(

1+U2

1+U2

)2

such that we have

=
v3
0r

3
0

G2M2(1− e2)

∫ −e(1−U2)(1+U2)−e2(1−U2)(1−U2)−e(2U)2

(1+U2)2[(
1+U2

1+U2

)
+ e

(
1−U2

1+U2

)]2 (
2

1 + U2
dU

)
.

We then rearrange terms, which yields

=
v3
0r

3
0

G2M2(1− e2)

∫ −e( 1−U2

1+U2

)
− e2

(
1−U2

1+U2

)2

− e2
(

2U
1+U2

)2

[
1 + e

(
1−U2

1+U2

)]2 (
2

1 + U2
dU

)
.

We can combine the first and second terms of the numerator such that

=
v3
0r

3
0

G2M2(1− e2)

∫ −e( 1−U2

1+U2

) [
1 + e

(
1−U2

1+U2

)]
− e2

(
2U

1+U2

)2

[
1 + e

(
1−U2

1+U2

)]2 (
2

1 + U2
dU

)
.
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We can now substitute for cos θ, sin θ, dθ. This yields

=
v3
0r

3
0

G2M2(1− e2)

∫
(1 + e cos θ)(−e cos θ)− (−e sin θ)(−e sin θ)

(1 + e cos θ)2
dθ.

Splitting the integral into two terms, we have

=
v3
0r

3
0

G2M2(1− e2)

[
−
∫

e cos θ
1 + e cos θ

dθ −
∫

e2 sin2 θ

(1 + e cos θ)2
dθ

]
.

We begin integration by parts on the second term such that

U = e sin θ dU = e cos θdθ

V = 1
1+e cos θ dV = e sin θ

(1+e cos θ)2 dθ

We now have

=
v3
0r

3
0

G2M2(1− e2)

[
−
∫

e cos θ
1 + e cos θ

dθ − e sin θ
1 + e cos θ

+
∫

e cos θ
(1 + e cos θ)

dθ

]
.

The first and third terms cancel and we are left with

=
v3
0r

3
0

G2M2(1− e2)
−e sin θ

1 + e cos θ
.

We now integrate the second term,

v3
0r

3
0

G2M2(1− e2)

∫
2

(1 + e) + (1− e)U2
dU.

We multiply this by
√

1−e√
1−e and 1+e

1+e such that we have

=
v3
0r

3
0

G2M2(1− e2)

∫ 2
√

1−e√
1−e

1+e√
1+e
√

1+e

(1 + e) + (1− e)U2
dU.

Rearranging terms yields

=
v3
0r

3
0

G2M2(1− e2)

∫ 2√
1−e
√

1+e

(√
1−e√
1+e

)
[

(1+e)+(1−e)U2

1+e

] dU.

This is equivalent to

=
v3
0r

3
0

G2M2(1− e2)
2√

1− e
√

1 + e

∫ (√
1−e√
1+e

)
1 +

(√
1−e√
1+e

U
)2 dU.
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We now introduce another trigonometric substitution such that

U =

√
1 + e

1− e
tan(V ) dU =

√
1 + e

1− e
sec2(V )dV.

Substituting, we have

=
v3
0r

3
0

G2M2(1− e2)
2√

1− e
√

1 + e

∫
sec2(V )

1 + tan2(V )
dV.

We know sec2(V ) = 1 + tan2(V ), and so we reduce and integrate yielding

=
v3
0r

3
0

G2M2(1− e2)
2√

1− e
√

1 + e

∫
dV =

v3
0r

3
0

G2M2(1− e2)
2√

1− e
√

1 + e
· V.

Substituting for V yields

=
v3
0r

3
0

G2M2(1− e2)
2√

1− e2
tan−1

(√
1− e
1 + e

U

)
.

Substituting for U , we have

=
v3
0r

3
0

G2M2(1− e2)
2√

1− e2
tan−1

[√
1− e
1 + e

tan
(
θ

2

)]
.

Finally, we have

t =
v3
0r

3
0

G2M2

∫ θ

0

dθ

(1 + e cos(θ))2

=
v3
0r

3
0

G2M2(1− e2)

[
−e sin θ

1 + e cos θ
+

2√
1− e2

tan−1

[√
1− e
1 + e

tan
(
θ

2

)]
+ nT

]
,

where T is the period of the orbit, given by

T =
2πa3/2

√
GM

and n is the number of complete revolutions the planet has made, or for φ > 2π,
φ = θ + 2πn.

6.3 Appendix C

Proving u1 + u2 + u3 = 1
ε .

When we expand ε(u−u1)(u2−u)(u3−u), the u2 term works out to be −ε(u1 +
u2 + u3)u2. Equating this with the u2 term in our energy equation, we have
−ε(u1 + u2 + u3)u2 = −u2, and thus

u1 + u2 + u3 =
1
ε
.
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