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Abstract. This paper gives a general overview of Baire one func-
tions, including examples as well as several interesting properties
involving bounds, uniform convergence, continuity, and Fσ sets.
We conclude with a result on a characterization of Baire one func-
tions in terms of the notion of first return recoverability, which is
a topic of current research in analysis [6].

1. History

Baire one functions are named in honor of René-Louis Baire (1874-
1932), a French mathematician who had research interests in continuity
of functions and the idea of limits [1]. The problem of classifying the
class of functions that are convergent sequences of continuous functions
was first explored in 1897. According to F.A. Medvedev in his book
Scenes from the History of Real Functions, Baire was interested in the
relationship between the continuity of a function of two variables in
each argument separately and its joint continuity in the two variables
[2]. Baire showed that every function of two variables that is continuous
in each argument separately is not pointwise continuous with respect
to the two variables jointly [2]. For instance, consider the function

f(x, y) =
xy

x2 + y2
.

Observe that for all points (x, y) 6= 0, f is continuous and so, of course,
f is separately continuous. Next, we see that,

lim
(x,0)→(0,0)

xy

x2 + y2
= lim

(0,y)→(0,0)

xy

x2 + y2
= 0

as (x, y) approaches (0, 0) along the x-axis and y-axis respectively.
However, as (x, y) approaches (0, 0) along the line y = x, we have

lim
(x,x)→(0,0)

xy

x2 + y2
=

1

2
.

Hence, f is continuous along the lines y = 0 and x = 0, but is discon-
tinuous overall at (0, 0). It can be shown that f is a Baire one function.
It was this idea that motivated the development of the classification
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of Baire class functions, which was later generalized in Baire’s 1899
dissertation Sur les fonctions des variables réelles [2].

In general, a function that is Baire class n, is the pointwise limit of
a sequence of Baire class n − 1 functions, where Baire class 0 consists
of the set of all continuous functions [3]. For instance, a function that
is Baire class one (which we will define in the next section) is the
pointwise limit of continuous functions. Functions that are Baire class
two are the pointwise limit of a sequence of Baire class one functions,
and so on.

2. Preliminaries and Definition of Baire One

Before we define what it means for a function to be Baire one, it
is necessary to first introduce some background that will be helpful.
We assume that the reader has some familiarity with sequences of real
numbers and what it means for a sequence to converge. It is possible to
make analogous statements in terms of functions. Let {fn} define a se-
quence of functions whose domain and range is the set of real numbers.
We are interested to see if {fn} converges to a specific function at each
point in its interval for which it is defined. This type of convergence is
known as pointwise convergence and we state it below.

Definition 1 (Pointwise Convergence). Let {fn} be a sequence of func-
tions defined on a set D and also let f be a function defined on D. If
the sequence {fn(x)} converges to f(x) for each x ∈ D, then {fn}
converges pointwise to f on D.

In other words, f(x) = limn→∞ fn(x) for all x ∈ I. An example to
illustrate the definition is as follows. Let gn : [0, 1] → R be defined as
gn(x) = xn. We see that the sequence converges pointwise to

g(x) =

{

0, for x ∈ [0, 1);
1, if x = 1.

From Figure 1, we notice that each gn is continuous on the closed
interval [0, 1]. Given our definition of pointwise convergence, we now
state the formal definition of a Baire one function.

Definition 2. [5] Let D ⊆ R. A function f : D → R is called a Baire

one function if f is the pointwise limit of a sequence of continuous
functions, that is, if there is a sequence {fn} of functions continuous
on D such that for every x ∈ D, f(x) = limn→∞ fn(x).

The function g above is an example of a Baire one function since
each function gn is continuous and converges pointwise to g on [0, 1] as
n → ∞.
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Figure 1. The function gn, n = 1, 2, 3, 4, 5, 6

3. Examples and Some Properties of Baire One Functions

We now present some examples as well as some interesting properties
of Baire one functions. As shown in the previous section, a Baire
one function does not have to be continuous, however all continuous
functions are Baire one by definition. To show this, suppose j is a
continuous function and let jn : R → R where jn(x) = j(x) + 1/n, for
each n ∈ Z+. It follows that j(x) = limn→∞ jn(x).

Another question that we might ask is whether or not we can we
extend the domain of a Baire one function to the entire real line. The
answer is yes. Let kn : R → R be defined as the following:

kn(x) =















0, if x < 5 − 1
n
;

nx − (5n − 1), if 5 − 1
n
≤ x ≤ 5;

−nx + (5n + 1), if 5 < x ≤ 5 + 1
n
;

0, if x > 5 + 1
n
.

We see that kn converges pointwise to k on R (see Figure 2) where,

k(x) =

{

0, if x 6= 5;
1, if x = 5.

This shows that functions can still be Baire one if they are discontin-
uous at one point. One of the questions one might ask is the following,
how many points of continuity does a Baire one function have to have?
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Figure 2. The function kn, n = 1, 2, 3, 4

More specifically, can a Baire one function be everywhere discontinu-
ous? The answer is no, and the reason will be addressed later on. In
fact, we will see that Baire one functions must have many points of
continuity.

However, suppose f : R → R has a finite number of jump disconti-
nuities at x = x1, x2, . . . , xk. Is f Baire one? The answer is yes. Let
x = x1, x2, . . . , xk be the finite number of discontinuities of f , where
x1 < x2 < x3 < · · · < xk. We will show the case when k = 1. Given
any positive integer n, we see that f is continuous on the interval
(−∞, x1 − 1/n), so define fn(x) = f(x) on this interval. Likewise,
fn(x) = f(x) is continuous on the interval (x1 +1/n, x2), where x = x2

is the next point of discontinuity. We then define our function fn such
that fn(x) is a linear function on the interval [x1 − 1/n, x1] connect-
ing the points f(x1 − 1/n) and f(x1) together (in order to guarantee
the continuity of the fns) and likewise on the interval [x1, x1 + 1/n]
connecting the points f(x1) and f(x1 + 1/n) in a linear manner. As
a result, fn converges to f as n approaches infinity. The same process
can be repeated for the other points {x2, x3, ..., xk} where f is discon-
tinuous. We have just shown that functions with finitely-many points
of discontinuities are Baire one.
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Another interesting property is as follows. Suppose f and g are Baire
one functions, both mapping D ⊆ R into R. Since the sequences {fn}
and {gn} converge pointwise to f and g respectively, it follows by a
property of convergent sequences that {fn + gn} converge to f + g and
hence f + g is Baire one. Likewise, the sequence {fngn} converges to
fg by a similar argument and fg is Baire one [4].

Finally, we note that all differentiable functions are Baire one. This
should not be too surprising, since all differentiable questions are con-
tinuous, and all continuous functions are Baire one by definition. A
proof of this fact is given in the next theorem.

Theorem 1. Suppose f : R → R is differentiable. Then f ′ is Baire
one.

Proof. We will show that f ′(x) = limn→∞ fn(x). From calculus, we
know that the definition of the derivative of a function f is defined as

f ′(x) = lim
h→0

f(x + h) − f(x)

h
.

We want our expression of f ′ to be in the form of an infinite limit.
Hence, the following is an equivalent statement.

f ′(x) = lim
h→0

f(x + h) − f(x)

h

= lim
n→∞

f
(

x + 1
n

)

− f(x)
1
n

= lim
n→∞

n

[

f

(

x +
1

n

)

− f(x)

]

.

Let fn(x) = n

[

f

(

x + 1
n

)

− f(x)

]

, and note that fn is continuous

for n = 1, 2, 3 . . .. We conclude that,

f ′(x) = lim
n→∞

n

[

f

(

x +
1

n

)

− f(x)

]

= lim
n→∞

fn(x).

�
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4. Bounds and Uniform Convergence

In this section, we present some properties of Baire one functions that
pertain to bounds. An interesting question one might ask is whether a
Baire one function f : [a, b] → R must be bounded that is, does there
exist a real number M such that |f(x)| ≤ M for all x ∈ [a, b]?

We first give an example of an unbounded Baire one function f :
[0, 1] → R. Next, we give two properties of bounded Baire one func-
tions and conclude with a theorem about uniform convergence.

Let fn and f be defined as follows on the closed interval [0, 1]. We
note that {fn} is a sequence of continuous functions.

fn(x) =

{

n2x, if 0 ≤ x < 1
n
;

1
x
, if 1

n
≤ x ≤ 1.

f(x) =

{

0, if x = 0;
1/x, if 0 < x ≤ 1.

It’s obvious that f is unbounded on [0, 1]. We will show that fn

converges to f pointwise on [0, 1]. Let x ∈ [0, 1]. Then we have two
cases to consider.

If x = 0, we have fn(0) = 0 = f(0) for all n.
If 0 < x ≤ 1, we note the following. Choose a positive integer N

such that 1/N < x. Then fn(x) = 1/x = f(x) for n ≥ N , since
1/n ≤ 1/N < x. It follows that

lim
n→∞

fn(x) = lim
n→∞

f(x) = f(x).

Hence, fn converges pointwise to f . We have just found a Baire one
function that is unbounded.

The next result shows that given a Baire one function with bound
M , we can find a sequence of continuous function {fn} that converges
pointwise to f with the same bound.

Lemma 1. If f : [a, b] → R is a bounded Baire one function with bound
M , then there is a sequence {fn} of continuous functions such that each
fn has the same bound M and such that {fn} converges pointwise to f
on [a, b].

Proof. Let {gn} be a sequence of continuous functions that converges
pointwise to f on a closed interval [a, b]. Suppose also that f has bound
M . Let {fn} be the sequence defined piecewise by
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fn(x) =







−M, if gn(x) < −M ;
gn(x), if −M ≤ gn(x) ≤ M ;
M, if gn(x) > M .

It is apparent that each fn has bound M . Since f also has bound
M and each gn converges pointwise to f on [a, b], it follows that {fn}
converges pointwise to f on [a, b] with bound M . �

We use this result in the proof of the following lemma, which will
in turn be used to help show the relationship between Baire one and
uniform convergence.

Lemma 2. Let {fk} be a sequence of Baire one functions defined on
[a, b] and let

∑∞
k=1 Mk be a convergent sequence of positive real numbers.

If |fk(x)| ≤ Mk for all k and for all x ∈ [a, b], then the function
f(x) =

∑∞
k=1 fk(x) is a Baire one function.

Proof. Let {fk} be a sequence of Baire one functions defined on [a, b]
and let

∑∞
k=1 Mk be a convergent sequence of positive real numbers.Since

each fk is Baire one, for each positive integer k, there exists a sequence
{gki

} of continuous functions such that gki converges pointwise to fk

on [a, b] and by Lemma 1, |gki| ≤ Mk for all i. For each positive integer
n, let

hn = g1n + g2n + · · · + gnn.

We will show that {hn} converges pointwise to f on [a, b]. Fix a point
x ∈ [a, b] and let ε > 0. By assumption, there exists a positive integer
K such that

∑∞
k=K+1 Mk < ε. Choose an integer N > K such that

|gki(x) − fk(x)| < ε
K

for 1 ≤ k ≤ K and for i ≥ N . For any n ≥ N we
have,

|hn(x) − f(x)| =

∣

∣

∣

∣

n
∑

k=1

gnk(x) −
∞

∑

k=1

fk(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

n
∑

k=1

[gkn(x) − fk(x)]

∣

∣

∣

∣

+

∣

∣

∣

∣

∞
∑

k=n+1

fk(x)

∣

∣

∣

∣

≤
K

∑

k=1

|gkn(x) − fk(x)| +
n

∑

k=K+1

|gkn(x)| +
∞

∑

k=K+1

|fk(x)|

<

K
∑

k=1

ε

K
+ 2

∞
∑

k=K+1

Mk

< 3ε
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Since ε > 0 was arbitrary, it follows that {hn(x)} converges pointwise
to f(x) for all x ∈ [a, b]. �

While the definition of Baire category one functions relies simply on
the fact that a sequence of continuous functions converges pointwise
to a limit function f , pointwise convergence does not guarantee that
the limit function necessarily retains the same properties of each of
the functions fn. In order to ensure that the functions fn and f have
the same properties, a stronger kind of convergence (defined below) is
required [4].

Definition 3 (Uniform Convergence). Let {fn} be a sequence of func-
tions defined on a set D and let f be defined on D. The sequence {fn}
converges uniformly to f on D if for each ε > 0 there exists a positive
integer N such that |fn(x)−f(x)| < ε for all x ∈ D and for all n ≥ N .

From the definition we see that uniform convergence is pointwise
convergence with the added property that given any ε > 0, the choice
of N is independent of x ∈ D [4]. Figure 3 shows that for sufficiently
large N , the graph of fn must lie between the dotted lines around the
graph of f .

To give a simple example that illustrates the definition, consider the
sequence {fn} defined by fn(x) = cos(nx)/n for all n. We will show
that this sequence converges uniformly to the function f defined by
f(x) = 0 for all x ∈ R. Let ε > 0 and choose a positive integer N such
that N > 1/ε. Then for all n ≥ N and x ∈ R,

|fn(x) − f(x)| =

∣

∣

∣

∣

cos(nx)

n

∣

∣

∣

∣

≤
1

n
≤

1

N
< ε.

The inequality shows that the sequence of functions {fn} converges
uniformly to the limit function f on R.

Our goal is to show that the limit function f of a uniformly conver-
gent sequence of Baire one functions {fn} is also Baire one.

Theorem 2. Let {fn} be a sequence of Baire one functions defined on
[a, b]. If {fn} converges uniformly to f on [a, b], then f is a Baire one
function.

Proof. Let {fn} be a sequence of Baire one functions that converges
uniformly to f on [a, b]. By definition of uniform convergence, for each
k, there exists a subsequence {fnk

} such that |fnk
(x)− f(x)| < 2−k for

all x ∈ [a, b].
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Figure 3. Illustration of Uniform Convergence [4]

Let’s consider the sequence {fnk+1
−fnk

}. We see that by the triangle
inequality,

|fnk+1
(x) − fnk

(x)| ≤ |fnk+1
(x) − f(x)| + |f(x) − fnk

(x)|

≤ 2−(k+1) + 2−k

=
1

2
(2−k) + 2−k =

(

3

2

)

2−k.

Let Mk = (3/2)2−k and note that |fnk+1
(x) − fnk

(x)| ≤ Mk and
∑∞

k=1 Mk is a convergent geometric series. We will show that the func-
tion

∑∞
k=1[fnk+1

(x)− fnk
(x)] is Baire one and use the result of Lemma

2 to show that f is Baire one. Thus,

∞
∑

k=1

[fnk+1
(x) − fnk

(x)] = lim
N→∞

N
∑

k=1

[fnk+1
(x) − fnk

(x)]

= lim
N→∞

N
∑

k=1

fnk+1
(x) −

N
∑

k=1

fnk
(x)

= f(x) − fn1
(x).

By hypothesis, the function fn1
(x) is Baire one. It follows by Lemma

2 that the function
∑∞

k=1[fnk+1
(x) − fnk

(x)] = f(x) − fn1
(x) is Baire

one. Since f(x) = (f(x) − fn1
(x)) + fn1

(x) and the sum of two Baire
one functions is Baire one, f is also Baire one. �

5. Fσ Sets

We now try to find a way to determine whether or not a function
is Baire one by using properties and results of Fσ sets. We first define
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several properties of Fσ sets. Then, we digress briefly to present a
theorem about continuous functions that is an analog of our main result
of this section. Finally, we present and prove our main result.

Definition 4 (Fσ set). [5] A subset A ⊆ R is called an Fσ set if A is
a countable union of closed sets. In other words, A =

⋃∞
n=1 Fn where

each Fn is a closed subset of R.

The following are examples of Fσ sets on the real line. Let X = (0, 1),
Y = [0, 1), and Z = [0, 1] respectively. Then we have,

X =

∞
⋃

n=3

[

1

n
, 1 −

1

n

]

;

Y =

∞
⋃

n=2

[

0, 1 −
1

n

]

;

Z =

∞
⋃

n=1

[0, 1];

which are all countable unions of closed sets of R. It’s obvious from the
definition that every closed set is also an Fσ set, but our constructions
of X and Y show there exist sets that are Fσ and not closed. In fact,
all open subsets of R are also Fσ [4].

We now present some properties of Fσ sets.

Lemma 3. The intersection of two Fσ sets is an Fσ set.

Proof. Let A =
⋃∞

i=1 Ai and B =
⋃∞

j=1 Bj, such that Ai’s and Bj’s are
closed sets. We see that by DeMorgan’s Laws,

A ∩ B = (∪∞
i=1Ai) ∩ (∪∞

j=1Bj) = ∪∞
i=1 ∪

∞
j=1 (Ai ∩ Bj)

For each i and j, the set Ai ∩Bj is a closed set. Hence A ∩B is an Fσ

set. �

Lemma 4. Suppose that K and E are closed subsets of R. Then K−E
is an Fσ set.

Proof. Let K and E be closed sets. Since every closed set is an Fσ set
and every open subset of R is also an Fσ set [4], it follows from Lemma
3 that,

K − E = K ∩ EC

is an Fσ set, where EC denotes the complement of the set E (which is
an open set). �
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The next result states that a closed interval [a, b] which equals a
countable union of Fσ sets, can also be written as a countable union
of “smaller” disjoint Fσ sets. It will be used in the proof of the main
theorem of this section which gives a criterion that determines whether
or not a function is Baire one.

Lemma 5. Suppose [a, b] =
⋃n

k=1 Ak and each Ak is an Fσ set. Then
[a, b] =

⋃n
k=1 Bk where each Bk is an Fσ set, Bk ⊆ Ak for each k, and

the Bk’s are pairwise disjoint.

Proof. Suppose [a, b] =
⋃n

k=1 Ak and each Ak is an Fσ set. By definition
of Fσ sets, each set Ak is a countable union of closed sets. It follows
that [a, b] =

⋃n
k=1 Ak =

⋃∞
i=1 Ei where each Ei is closed and Ei ⊆ Ak

for some k.
Next, let H1 = E1, and Hi = Ei − (E1 ∪ · · · ∪ Ei−1) for i ≥ 2. It

follows from Lemma 4 that each Hi is an Fσ set. Since [a, b] =
⋃n

k=1 Ak

and each Hi ⊆ Ak for some k, [a, b] =
⋃n

k=1 Ak =
⋃∞

i=1 Hi. We will
now show that each of the Hi’s are pairwise disjoint. We see that by
DeMorgan’s Laws,

H1 ∩ H2 = E1 ∩ (E2 − E1) = ∅

H2 ∩ H3 = (E2 − E1) ∩ [E3 − (E1 ∪ E2)]

= (E2 − E1) ∩ [(E3 − E1) ∩ (E3 − E2)] = ∅
...

Hi ∩ Hi−1 = [Ei − (E1 ∪ · · · ∪ Ei−1)] ∩ [Ei−1 − (E1 ∪ · · · ∪ Ei−2)]

= (Ei − E1) ∩ [Ei − (E2 ∪ · · · ∪ Ei−1)]

∩ (Ei−1 − E1) ∩ [Ei−1 − (E2 ∪ · · · ∪ Ei−2)] = ∅.

Hence, the Hi’s are pairwise disjoint.
Now, define

Π1 = {i : Hi ⊆ A1}

and
Πk = {i : Z+ − (Π1 ∪ · · · ∪ Πk−1) : Hi ⊆ Ak},

for 2 ≤ k ≤ n. Also, let

Bk =
⋃

i∈Πk

Hi.

We will show that the Bk’s are pairwise disjoint Fσ sets, Bk ⊆ Ak for
each k, and conclude that [a, b] =

⋃n

k=1 Bk.
Since each Bk is made up of pairwise disjoint Fσ sets Hi, it follows

that the Bk’s are pairwise disjoint Fσ sets as well. Also, since each
Hi ⊆ Ak for some k, it follows that Bk ⊆ Ak for all k. Lastly, since
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[a, b] =
⋃∞

i=1 Hi, we ask if all of the Hi’s are used to build each of the
Bk’s. The answer is yes, since by definition of Bk, for a given j, Hj is
used to build Bl where l = min{k : Hj ⊆ Ak}. Hence, [a, b] =

⋃n

k=1 Bk.
This completes the proof. �

We digress briefly to present a theorem concerning continuous func-
tions. This will “motivate” an analogous result for Baire one functions.
We first present a definition and several results that will be used in the
proof of Theorem 3.

Definition 5. [4] Let A be a set of real numbers.

(1) A set E ⊆ A is open in A if there is an open set O such that
E = A ∩ O.

(2) A set E ⊆ A is closed in A if there is a closed set F such that
E = A ∩ F .

Lemma 6. [4] Let A be a set of real numbers.

(1) A set E ⊆ A is open in A if and only if A − E is closed in A.
(2) A set E ⊆ A is closed in A if and only if A − E is open in A.
(3) If A is an open set, then a set E ⊆ A is open in A if and only

if it is open.
(4) If A is an closed set, then a set E ⊆ A is closed in A if and

only if it is closed.

Lemma 7. [4] Let E be a set of real numbers. A point x is a limit
point of E if and only if there exists a sequence of points in E − {x}
that converges to x.

We are now ready to prove the following result.

Theorem 3. A function f : [a, b] → R is continuous on [a, b] if and
only if the sets {x ∈ [a, b] : f(x) < r} and {x ∈ [a, b] : f(x) > r} are
open in [a, b] for each real number r.

Proof. Suppose that the sets {x ∈ [a, b] : f(x) < r} and {x ∈ [a, b] :
f(x) > r} are open in [a, b] for each real number r. Let c ∈ [a, b] and
let ε > 0. By definition, we see that there exist open sets O1 and O2

such that

{x ∈ [a, b] : f(x) < f(c) + ε} = [a, b] ∩ O1

{x ∈ [a, b] : f(x) > f(c) − ε} = [a, b] ∩ O2

where r = f(c) ± ε.
Since c ∈ [a, b], and O1 and O2 are open sets, the set O = O1 ∩ O2

is an open set that contains the point c. Next, choose δ > 0 such that
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the interval (c − δ, c + δ) ⊆ O. If |x − c| < δ and x ∈ [a, b], then
x ∈ [a, b] ∩ O1 and x ∈ [a, b] ∩ O2 by the definition of O. Hence,

f(c) − ε < f(x) < f(c) + ε.

It follows that |f(x) − f(c)| < ε for all x ∈ [a, b] such that |x − c| < δ.
This shows that f is continuous on [a, b].

Next, suppose that f is continuous on [a, b] and let r be a real num-
ber. To show that the sets {x ∈ [a, b] : f(x) < r} and {x ∈ [a, b] :
f(x) > r} are open in [a, b] for each real number r, we will use proper-
ties (2) and (4) of Lemma 6, and Lemma 7 to show that the sets

{x ∈ [a, b] : f(x) ≤ r}

{x ∈ [a, b] : f(x) ≥ r}

are closed in [a, b], that is each set contains all of its limit points.
First, let E = {x ∈ [a, b] : f(x) ≥ r} and suppose w is a limit point

of E, that is, for each positive number m, the set (w − m, w + m) ∩ E
contains a point of E other than w. By Lemma 7, there exists a
sequence {xn} in E − {w} that converges to w. By assumption, f is
continuous at w, so the sequence {f(xn)} converges to f(w). Since
f(xn) ≥ r for all n, we have f(w) ≥ r. Thus, w is in E.

Likewise, let G = {x ∈ [a, b] : f(x) ≤ r} and suppose d is a limit
point of G. By Lemma 7, there exists a sequence {yn} in G−{d} that
converges to d. By assumption f is continuous at d, so the sequence
{f(yn)} converges to f(d). Since f(yn) ≤ r for all n, we have f(d) ≤ r.
Thus, d is in G.

We have thus shown that E and G each contain all of their limit
points. By definition the sets E and G are closed. �

We now introduce the concept of the characteristic function of a set
B ⊆ R. Lemma 8 is called the Tietze Extension Theorem, which is
a result from analysis (or, more generally, topology) [4]. Lemma 9 is
a result that uses both the definition of the characteristic function of
a set and the Tietze Extension Theorem, and will also be used in the
final theorem of this section.

Definition 6. Let B ⊆ R. The characteristic function of B is the
real-valued function χB : R → R defined by the equation

χB(x) =

{

1, if x ∈ B;
0, if x ∈ R − B.
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Lemma 8 (Tietze Extension Theorem). Let E be a closed set. If a
function f : E → R is continuous on E, then there exists a continuous
function fe : R → R such that f(x) = fe(x) for all x ∈ E.

Lemma 9. Suppose that [a, b] =
⋃n

k=1 Bk where each Bk is an Fσ set
and the Bk’s are pairwise disjoint. Let

f(x) =
n

∑

k=1

ckχBk
(x)

for x ∈ [a, b]. Then f is a Baire one function.

Proof. For each k let Bk =
⋃∞

i=1 Ek
i where the sequence {Ek

i } is a
nondecreasing sequence of closed sets. This is possible because by
assumption, each Bk is an Fσ set. For each positive integer m, let

fm =
n

∑

k=1

ckχEk
m
.

We will verify that the restriction of fm to the closed set
⋃n

k=1 Ek
m is

continuous.
Suppose there exists a sequence {xl} that converges to x0 ∈

⋃n

k=1 Ek
m.

Let x0 ∈ Ej
m for some fixed j, 1 ≤ j ≤ n. We claim that all but

finitely many of the xl’s are in Ej
m. Suppose not, then there exists a

subsequence {xln} ⊆ Ek
m, such that {xln} converges to x0 ∈ Ek

m. Since
each Ek

m is closed and disjoint, the set Ej
m contains finitely many points

xl.
Thus, for sufficiently large l, f(xl) = cj = f(x0). This certainly im-

plies that f(xl) converges to f(x0). By definition, f is continuous at
x0 and hence on all of

⋃n

k=1 Ek
m.

Now let gm be the linear extension of fm from
⋃n

k=1 Ek
m to all of R.

By the Tietze Extension Theorem gm is continuous on R. Hence, gm is
continuous on [a, b].

Finally, since
f(x) = lim

m→∞
gm(x)

for all x ∈ [a, b], the sequence {gm} converges pointwise to f on [a, b].
It follows that f is the pointwise limit of a sequence of continuous
functions. By definition, f is Baire one. �

We now present the main result of this section, and as stated earlier,
it “looks” very similar to Theorem 3 concerning continuous functions.
It follows from the next theorem that a function f is Baire one if and
only if two sets involving the inverse image of f are Fσ sets.
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Theorem 4. A function f : [a, b] → R is a Baire one function if and
only if the sets {x ∈ [a, b] : f(x) < r} and {x ∈ [a, b] : f(x) > r} are
Fσ sets for each real number r.

Proof. Suppose that f is a Baire one function. Let {fn} be a sequence
of continuous functions that converges pointwise to f on [a, b], and let
r be a real number. It can be shown that

{x ∈ [a, b] : f(x) < r} =
∞
⋃

k=1

∞
⋃

p=1

[ ∞
⋂

n=p

{

x ∈ [a, b] : fn(x) ≤ r −
1

k

}]

.

Since fn is a sequence of continuous functions, the set
{

x ∈ [a, b] : fn(x) ≤ r −
1

k

}

is closed, since the inverse image of a closed set is closed [4]. It follows
that the set {x ∈ [a, b] : f(x) < r} is an Fσ set since the countable
union of intersections of closed sets is an Fσ set. Since f is Baire one
by assumption, −f is Baire one by properties of Baire one functions.
Hence, the set {x ∈ [a, b] : f(x) > r} is also an Fσ set using a similar
argument.

For the converse, suppose that f is a bounded function such that
the sets {x ∈ [a, b] : f(x) < r} and {x ∈ [a, b] : f(x) > r} are Fσ

sets for each real number r. We will show the general case (when f
is unbounded) later on. We use the following construction to produce
a sequence {fn} of Baire one functions. Choose M > 0 such that
|f(x)| < M for all x ∈ [a, b]. Next, fix n and let

yk = −M +
2Mk

n
,

for 0 ≤ k ≤ n. Also, let

Ak = {x ∈ [a, b] : yk−1 < f(x) < yk+1},

for 1 ≤ k ≤ n. Let

A = {x ∈ [a, b] : f(x) < yk+1}

B = {x ∈ [a, b] : f(x) ≤ yk−1}.

We will show that Ak = A ∩ BC is an Fσ set, where BC denotes
the complement of B. By hypothesis, A is an Fσ set. We see that
BC = {x ∈ [a, b] : f(x) > yk−1} is an Fσ set by the same argument.
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Since the intersection of two Fσ sets is also an Fσ set, it follows that
Ak is an Fσ set as well. Also by hypothesis,

[a, b] =
n−1
⋃

k=1

Ak.

By Lemma 5, [a, b] =
⋃n−1

k=1 Bk, where each Bk is an Fσ set, Bk ⊆ Ak

for each k, and the Bk’s are pairwise disjoint. For each n, define fn :
[a, b] → R as

fn(x) =

n−1
∑

k=1

ykχBk
(x).

By Lemma 9, fn is a Baire one function.

The sets B1, B2, ..., Bn−1 are pairwise disjoint and partition [a, b].
Next, fix n and x ∈ [a, b]. There exists j, 1 ≤ j ≤ n, such that x ∈ Bj

and Bj ⊆ Aj. By definition, fn(x) = yj, for x ∈ Bj. We know that

yj−1 < f(x) < yj+1, yj−1 < yj < yj+1.

Since fn(x) = yj, we have,

yj−1 < fn(x) < yj+1.

Thus, by definition of yk above,

|fn(x) − f(x)| <
1

2
|yj+1 − yj−1|

=
2M

n
,

for all x ∈ [a, b] and all n ∈ N. By definition, the sequence {fn} con-
verges uniformly to f on [a, b]. By Theorem 2, f is a Baire one function.

For the general case (where f is not necessarily bounded), let h :
R → (0, 1) be a continuous increasing function. For each real number
r we have,

(h ◦ f)−1(r,∞) = f−1(h−1(r,∞))

by properties of functions. We will show that,

(h ◦ f)−1(r,∞) =







[a, b], if r ≤ 0;
f−1(h−1(r),∞), if 0 < r < 1;
∅, if r ≥ 1,

where f : [a, b] → R, h : R → (0, 1), and (h ◦ f) : [a, b] → (0, 1). We
note that h ◦ f is a bounded function.
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For r ≤ 0, we have,

h−1((r,∞)) = {x ∈ R : h(x) ∈ (r,∞)}

= {x ∈ R : h(x) > r} = R.

Thus, (h ◦ f)−1(r,∞) = f−1(h−1(r,∞)) = f−1(R) = [a, b].

For 0 < r < 1, we see that,

h−1((r,∞)) = {x ∈ R : h(x) ∈ (r,∞)}

= {x ∈ R : h(x) > r}

= {x ∈ R : x > h−1(r)}

= (h−1(r),∞).

Thus, (h ◦ f)−1(r,∞) = f−1(h−1(r,∞)) = f−1(h−1(r),∞).

Finally, for r ≥ 1,

h−1((r,∞)) = {x ∈ R : h(x) ∈ (r,∞)}

= {x ∈ R : h(x) > r} = ∅

Thus, (h ◦ f)−1(r,∞) = f−1(h−1(r,∞)) = f−1(∅) = ∅.

Since,

(h ◦ f)−1(r,∞) = f−1(h−1(r,∞))

= {x ∈ [a, b] : f(x) ∈ (h−1(r),∞)}

= {x ∈ [a, b] : f(x) > h−1(r)},

it follows that h ◦ f satisfies the condition in the theorem and hence is
a Baire one function. By properties of functions,

f = h−1 ◦ (h ◦ f).

Since h is continuous and increasing, it is Baire one. By properties of
limits, the composition of a continuous and a Baire one function is also
Baire one. It follows that f is a Baire one function. This completes
the proof. �

As an illustration of Theorem 4, consider the characteristic function
χQ on the set Q of rational numbers,

χQ(x) =

{

1, if x ∈ Q;
0, if x ∈ R − Q.
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We know that the set of irrational numbers R−Q is not an Fσ set [4].
Let r = 1. The set {x ∈ [a, b] : χQ < 1} = {x ∈ [a, b] : χQ = 0} = R−Q

is not an Fσ set. Hence, the function χQ is not a Baire one function.1

6. Points of Continuity of f

Recall that many Baire one functions are discontinuous, but cer-
tainly not all discontinuous functions are necessarily Baire one. How
discontinuous are Baire one functions? Since the nowhere continuous
function χQ is not a Baire one function, we may wonder whether Baire
one functions must be continuous somewhere over its domain. In fact,
we will show that if f is a Baire one function, then every closed interval
contains a point of continuity of f .

We need some new definitions to help us with our proof. In addition,
the following lemmas will be useful. Let f : R → R be a fixed function.

Definition 7. Let A ⊆ R. The extended (possibly infinite) real number
ω(A) = sup{|f(x)− f(y)| : x, y ∈ A} is called the oscillation of f on
A.

One can think of the oscillation of a function f on a set A as roughly
the largest distance between the maximum and minimum values of f(x)
for all x ∈ A. We can also define the oscillation of a function f at a
point. This is shown as follows.

Definition 8. For x0 ∈ R, let Aδ = (x0 − δ, x0 + δ) for each δ > 0.
The oscillation of f at x0 is the number ω(x0) = limδ→0 ω(Aδ).

Let’s use this definition to show a simple (yet important) result in-
volving continuity.

Lemma 10. f is continuous at x0 if and only if ω(x0) = 0.

Proof. First, suppose f is continuous at x0 and let ε > 0. By definition,
there exists δ > 0 such that |f(x)− f(x0)| < ε

3
. Then, for all x, y ∈ Aδ

|f(x) − f(y)| ≤ |f(x) − f(x0)| + |f(x0) − f(y)|

<
ε

3
+

ε

3
=

2ε

3
< ε.

It follows that sup{|f(x) − f(y)| : x, y ∈ Aδ} ≤ 2
3
ε < ε. Since ε > 0

was arbitrary, we have ω(x0) = 0.

For the converse, suppose ω(x0) = 0 and let ε > 0. There exists
δ0 > 0 such that |ω(Aδ)| < ε for all x such that |x − x0| < δ0. Thus

1While not Baire one, it can be shown that χQ is Baire class two. See [7].
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by definition, limδ→0 sup{|f(x) − f(y)| : x, y ∈ Aδ} = 0 and |f(x) −
f(x0)| < ε. Therefore, x is continuous at x0. �

The next lemma will be used in our proof of Theorem 5. It is men-
tioned in discussion notes [5], and it won’t be proved here. It is a
version of a famous theorem called the Baire Category Theorem.

Lemma 11. Suppose that {Dn} is a sequence of closed subsets of R

and that [a, b] =
⋃∞

n=1 Dn. Then at least one of the sets Dn contains a
closed interval.

We are now ready to prove the following.

Theorem 5. If f : R → R is a Baire one function, then every closed
interval contains a point of continuity of f .

Proof. Let I0 be a closed interval and {fn} be a sequence of continuous
functions on R such that limn→∞ fn(x) = f(x) for all x ∈ R. We will
prove that I0 contains a point of continuity of f .

Let ε > 0. We first show that there exists a closed interval I1 ⊆ I◦
0

such that ω(I1) ≤ ε, where I◦
0 is the interior of I0 (or the non-endpoints

of I0). For m, n ∈ N, let

(1) Anm =

{

x ∈ I0 : |fn(x) − fn+m(x)| ≤
ε

3

}

.

Since fn is a sequence of continuous functions and the inverse image
of a closed set is closed, the set Anm is closed [4]. By properties of
closed sets, the set

Dn =
∞
⋂

m=1

Anm

is closed for all n We will now show that

I0 =

∞
⋃

n=1

Dn.

We note that Dn ⊆ I0 by definition. Hence, we need to show that
I0 ⊆ Dn for some n. In other words, given a fixed x ∈ I0, we must find
an N such that x ∈ ANm for all m.

Let ε > 0. Since by hypothesis, limn→∞ fn(x) = f(x) for all x ∈ R,
there exists a positive integer N such that |fn(x) − f(x)| ≤ ε

6
for all

n ≥ N . It follows that,
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|fN(x) − fN+m(x)| ≤ |fN(x) − f(x)| + |f(x) − fN+m(x)|

≤
ε

6
+

ε

6
=

ε

3
.

Thus, x ∈ ANm for all m, x ∈ DN , and I0 ⊆ Dn for some n. By Lemma
11, there exists n ∈ N and a closed interval J such that J ⊆ Dn.

Next, we note that for a fixed n, fn+m(x) converges pointwise to f(x)
for all x ∈ I0. It follows from (1) that

(2) |fn(x) − f(x)| ≤
ε

3
for all x ∈ J.

We now show that there exists a closed interval I1 ⊆ J◦ ⊆ I◦
0 such

that ω(I1, f) ≤ ε. First, we show that ω(I1, fn) ≤
ε
3
. This new notation

denotes the oscillation of fn over the interval I1. Since each fn is
continuous on J , then fn is uniformly continuous on J [4]. Let ε > 0.
There exists δ > 0 such that |fn(x) − fn(y)| ≤ ε

3
for all x, y ∈ J that

satisfies |x − y| ≤ δ. Since I1 ⊆ J we have,

(3) ω(I1, fn) = sup{|fn(x) − fn(y)| : x, y ∈ I1} ≤
ε

3
.

Now let x, y ∈ I1. Using equations (2) and (3) we have,

|f(x) − f(y)| ≤ |f(x) − fn(x)| + |fn(x) − fn(y)|+ |fn(y) − f(y)|

≤
ε

3
+

ε

3
+

ε

3
= ε.

We see that,

ω(I1, f) = sup{|f(x) − f(y)| : x, y ∈ I1} ≤ ε.

Using the construction above, we construct a sequence {Ik} of closed
intervals such that Ik+1 ⊆ I◦

k ⊆ I◦
0 for k = 1, 2, ... and

(4) ω(Ik, f) ≤
1

k
.

By the Nested Intervals Theorem [4], the set
∞
⋂

k=1

Ik

contains at least one point x0 and x0 ∈ I0. It follows from (4) that
ω(x0) = 0. By Lemma 10, f is continuous at x0. This completes the
proof. �
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7. Baire One and First-Return Recoverability

A well known fact from analysis is that a continuous function f :
[0, 1] → [0, 1] is uniquely determined by its values on any countable
dense set in [0, 1] (we define what it means for a set to be dense later
on) [9]. We extend this idea to Baire one functions and ask whether
they too can be determined by its values on any countable set. Since
not all Baire one functions are continuous, the answer is no, but there
are certain countable dense sets that give us some nice results. We
conclude with a characterization of Baire one functions using the notion
of first return recoverability. First, let’s state several definitions.

Definition 9 (Dense set). [8] A set D ⊆ X is dense in X if for any
point x ∈ X, any neighborhood of x contains at least one point from
D.

Equivalently, D is dense in X if and only if D = X, where D is the
closure of D.

Underlying our characterization is the idea of what we call a trajec-
tory. This is defined below.

Definition 10. A trajectory is any sequence {xn} of distinct points
in [0, 1], whose range is dense in [0, 1].

Any countable dense set J ⊆ [0, 1] is called a support set and any
enumeration of D is also a trajectory. If the value of a continuous
function f : [0, 1] → R at each point in a trajectory is known, then
there is an algorithm that computes the value of the function at any
point in [0, 1].

Definition 11. Let {xn} be a fixed trajectory and let y ∈ [0, 1]. Suppose
ρ > 0 and let Bρ(y) = {x ∈ [0, 1] : |x − y| < ρ}. Also, let r(Bρ(y)) be
the first element of the trajectory in Bρ(y). The first return route

to y, denoted Ry = {yk}, is given by the recursive formula

y1 = x0,

yk+1 =

{

r(B|y−yk|(y)), if y 6= yk

yk, if y = yk.

The function f : [0, 1] → R is called first return recoverable with respect
to {xn} if for each y ∈ [0, 1],

lim
k→∞

f(yk) = f(y),

and f is first return recoverable if there exists a trajectory {xn} such
that f is first return recoverable with respect to {xn}.
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It can be shown that a function f : [0, 1] → R is continuous if and
only if it is first-return recoverable with respect to every trajectory.
However, if we weaken this condition, we obtain the following theorem
characterizing Baire class one functions. Before we present the theo-
rem, we introduce the definition of a Gδ set. It will be used in the proof
of our last theorem.

Definition 12 (Gδ set). [4] A subset G ⊆ R is called a Gδ set if G
is a countable intersection of open sets. In other words, G =

⋂∞
n=1 Gn

where each Gn is an open subset of R.

Note that by DeMorgan’s Laws, the complement of a Gδ set is Fσ

[4].

Theorem 6. A function f : [0, 1] → R is first return recoverable if and
only if it is of Baire class one.

Proof. We will prove the forward direction. The other direction is given
in [6], which we leave to the reader. Suppose f : [0, 1] → R is first re-
turn recoverable with respect to a trajectory {xn}. It suffices to show
that for each real number r, the set A = {x ∈ [0, 1] : f(x) ≥ r} is a
Gδ set. If we can prove this, then we know that −f is also first return
recoverable and that {x ∈ [0, 1] : −f(x) ≥ −r} is a Gδ set, or equiv-
alently {x ∈ [0, 1] : f(x) ≤ r} is a Gδ set. It follows from Theorem 4
that f is Baire one.

Since f is first return recoverable with respect to a trajectory {xn},
f(x) = limk→∞ f(yk) for all x ∈ [0, 1] where {yk} = Ry, as defined in
the definition above. Fix r ∈ R. We assume the following.

(1) For each positive integer k, let Ik = (r − 1
k
,∞).

(2) Let {xnj
} be a subsequence of the trajectory {xn} consisting

of those xn ∈ f−1(Ik). In other words, those xn that satisfy
f(xn) > r − 1

k
.

(3) For each j ∈ N, let dj = min{1
2
|xnj

− xi| : i < nj}, and let
Oj = (xnj

− dj, xnj
+ dj).

Let

Hk =

∞
⋂

i=1

[ ∞
⋃

j=i

Oj ∪ {xn1
, xn2

, . . . , xni−1
}

]

.

From (1), (2), and (3) above, we have

A =
∞
⋂

k=1

Hk.
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We now show that for each fixed k, Hk is Gδ. First, since the union
of any collection of open sets is open,

⋃∞
j=i Oj is an open set. Second,

the set {xn1
, xn2

, . . . , xni−1
} is Gδ because it has a finite number of

elements [4]. Hence, it is equal to a countable intersection of open
sets. Let G =

⋃∞
j=i Oj and the set {xn1

, xn2
, . . . , xni−1

} =
⋂∞

n=1 Gn. It
follows that,

Hk = G ∪

[ ∞
⋂

n=1

Gn

]

=

∞
⋂

n=1

[

G ∪ Gn

]

where G and each Gn are open sets. Thus, Hk is a countable intersec-
tion of Gδ sets and is a Gδ set. It follows easily that A is a Gδ set as
well. �

8. Conclusion

While the definition of a Baire one function is fairly straightforward,
this paper shows that some of its properties and examples certainly
are not. In fact, most research papers dealing with this topic require
graduate-level analysis and/or topology in order to fully appreciate
(and understand) the results. Hence, many of the (perhaps) more
interesting results are not presented here.

With that said, there is great potential for further study of Baire
functions once one becomes more mathematically mature. Therefore,
this paper can be regarded as a starting point to a future, more in-depth
project or thesis.
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