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Abstract

Given a metric space (X, d), we may define a new metric space with Hausdorff

metric h on the set K of the collection of all nonempty compact subsets of X.

We show that if (X, d) is complete, then the Hausdorff metric space (K, h) is also

complete.

Introduction

The Hausdorff distance, named after Felix Hausdorff, measures the distance

between subsets of a metric space. Informally, the Hausdorff distance gives the

largest length out of the set of all distances between each point of a set to the

closest point of a second set. Given any metric space, we find that the Hausdorff

distance defines a metric on the space of all nonempty compact subsets of the metric

space. We find that there are many interesting properties of this metric space, which

will be our focus in this paper. The first property is that the Hausdorff induced

metric space is complete if our original metric space is complete. Similarly, the

second property we explore is that if our original metric space is compact, then our

Hausdorff induced metric space is also compact.
1
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In the next section, we provide some definitions and theorems necessary for

understanding this paper. We then define the Hausdorff distance in the following

section, and examine its properties through some examples and short proofs. We

find that the Hausdorff distance satisfies the conditions for a metric on a space of

nonempty compact subsets of a metric space. Finally, in our last section, we prove

that if our original metric space is complete then the Hausdorff induced metric

space is also complete. We further show that (K, h) is compact when (X, d) is

compact.

Preliminaries

The concepts in this paper should be familiar to anyone who has taken a course in

Real Analysis. The notation and terminology in this paper will come from Gordon’s

Real Analysis: A First Course [1]. Therefore, we expect the reader to be familiar

with the following concepts regarding metric spaces and real numbers.

Definition 2.1 Let S be a nonempty set of real numbers that is bounded below.

The number α is the infimum of S if α is a lower bound of S and any number

greater than α is not a lower bound of S. We will write α = inf S. The definition

of the supremum of S is analogous and will be denoted by supS.

Completeness Axiom Each nonempty set of real numbers that is bounded below

has an infimum. Similarly, any nonempty set of real numbers that is bounded above

has a supremum.

The reader may be more familiar with the following definitions when applied

to the metric space (R, d), where d(x, y) = |x − y|. However, with the exclusion

of some examples, for the majority of this paper we will be working in a general

metric space. Thus our definitions will be given with respect to any metric space

(X, d).
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Definition 2.2 A metric space (X, d) consists of a set X and a function

d : X ×X → R that satisfies the following four properties.

(1) d(x, y) ≥ 0 for all x, y ∈ X.

(2) d(x, y) = 0 if and only if x = y.

(3) d(x, y) = d(y, x) for all x, y ∈ X.

(4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The function d, which gives the distance between two points in X, is called a

metric. For example, a metric on the set of real numbers is d(x, y) = |x− y|. It is

easily verified that d satisfies the four properties listed above.

For the next set of definitions, let (X, d) be a metric space.

Definition 2.3 Let v ∈ X and let r > 0. The open ball centered at v with radius

r is defined by Bd(v, r) = {x ∈ X : d(x, v) < r}.

Definition 2.4 A set E ⊆ X is bounded in (X, d) if there exist x ∈ X and M > 0

such that E ⊆ Bd(x,M).

Definition 2.5 A set K ⊆ X is totally bounded if for each ε > 0 there is a finite

subset {xi : 1 ≤ i ≤ n} of K such that K ⊆
n⋃
i=1

Bd
(
xi, ε

)
.

For the following definitions, let {xn} be a sequence in a metric space (X, d).

Definition 2.6 The sequence {xn} converges to x ∈ X if for each ε > 0 there

exists a positive integer N such that d(xn, x) < ε for all n ≥ N . We say {xn}

converges if there exists a point x ∈ X such that {xn} converges to x.

Definition 2.7 The sequence {xn} is a Cauchy sequence if for each ε > 0 there

exists a positive integer N such that d(xn, xm) < ε for all m,n ≥ N .

It is easy to verify that every convergent sequence is a Cauchy sequence.

Definition 2.8 A metric space (X, d) is complete if every Cauchy sequence in

(X, d) converges to a point in X.

An example of a metric space that is not complete is the space (Q, d) of rational

numbers with the standard metric given by d(x, y) = |x − y|. However, the space
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R of real numbers and the space C of complex numbers under the same metric

d(x, y) = |x− y| are complete.

Definition 2.9 A set K ⊆ X is sequentially compact in (X, d) if each sequence

in K has a subsequence that converges to a point in K.

Note that by Theorem 8.59 in [1], a subset of a metric spaces is compact if and

only if it is sequentially compact; therefore, we will use the concepts of sequentially

compact and compact interchangeably throughout this paper.

Definition 2.10 The point x is a limit point of a set E if for each r > 0, the set

E ∩Bd(x, r) contains a point of E other than x.

As an alternative to the definition, Theorem 8.49 in [1] states that x is limit

point of the set E if and only if there exists a sequence of points in E\{x} that

converges to x. This theorem provides us with the opportunity to choose a sequence

converging to x, which will be useful in proving that a set is closed.

Definition 2.11 A set E is closed in (X, d) if E contains all of its limit points.

Definition 2.12 The closure of E, denoted E, is the set E ∪E′, where E′ is the

set of all limit points of E.

The following two results and lemma are placed in this section to be referred to

in later proofs. In addition they will serve as an introduction to proofs that use the

definition of convergent sequences and the triangle inequality.

Result 1: Let {xn} and {yn} be sequences in a metric space (X, d). If {xn}

converges to x and {yn} converges to y, then {d(xn, yn)} converges to d(x, y).

Proof. Let ε > 0. Since {xn} converges to x, by definition there exists a positive

integer N1 such that d(xn, x) < ε
2 for all n ≥ N1. Similarly, since {yn} converges to

y, there exists a positive integer N2 such that d(yn, y) < ε
2 for all n ≥ N2. Choose

N = max{N1, N2}. Then for all n ≥ N , we find that

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) <
ε

2
+ d(x, y) +

ε

2
= d(x, y) + ε,
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and

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y) <
ε

2
+ d(xn, yn) +

ε

2
= d(xn, yn) + ε.

Together these inequalities imply |d(xn, yn)− d(x, y)| < ε for all n ≥ N . Therefore,

{d(xn, yn)} converges to d(x, y). �

Result 2: If {zk} is a sequence in a metric space (X, d) with the property that

d(zk, zk+1) < 1/2k for all k, then {zk} is a Cauchy sequence.

Proof. Let ε > 0 and choose a positive integer N such that
1

2N−1
< ε. Then for all

n > m ≥ N we find that

d(zm, zn) ≤ d(zm, zm+1) + d(zm+1, zm+2) + · · ·+ d(zn−1, zn)

<
1

2m
+

1

2m+1
+ · · ·+ 1

2n−1

<

∞∑
k=m

1

2k
=

1

2m−1
≤ 1

2N−1
< ε.

It follows that {zk} is a Cauchy sequence. �

Lemma 1: Let (X, d) be a metric space and let A be a closed subset of X. If

{an} converges to x and an ∈ A for all n, then x ∈ A.

Proof. Suppose {an} is a sequence that converges to x and an ∈ A for all n. There

are two cases to consider. If there exists a positive integer n such that an = x, then

it is clear x ∈ A. If there does not exist a positive integer n such that an = x, then

x is a limit point of A by Theorem 8.49 in [1]. Since A is closed, x ∈ A. �

Construction of the Hausdorff Metric

We now define the Hausdorff metric on the set of all nonempty, compact subsets

of a metric space. Let (X, d) be a complete metric space and let K be the collection

of all nonempty compact subsets of X. Note that K is closed under finite unions

and nonempty intersections. For x ∈ X and A,B ∈ K, define

r(x,B) = inf{d(x, b) : b ∈ B} and ρ(A,B) = sup{r(a,B) : a ∈ A}.
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Note that r is nonnegative and exists by the Completeness Axiom since

d(a, b) ≥ 0 by the definition of a metric space. Since r exists and is nonnegative,

then both ρ(A,B) and ρ(B,A) exist and are nonnegative. In addition, we define

the Hausdorff distance between sets A and B in K as

h(A,B) = max{ρ(A,B), ρ(B,A)}.

Before proving that h defines a metric on the set K, let us consider a few examples

to get a grasp on how these distances work. Consider the following example of closed

interval sets in (R, d), where d(x, y) = |x− y|.

Example Let A = [0, 20] and let B = [22, 31].

We find that r(x,B) is going to be the infimum of the set of distances from each

a ∈ A to the closest point in B. As an example of one of these distances, consider

a = 12. Then r(12, B) = inf{d(12, b) : b ∈ B} = d(12, 22) = 10. We can note that

for each a ∈ A, the closest point in B that gives the smallest distance will always

be b = 22. Therefore, we find that ρ(A,B) = sup{d(a, 22) : a ∈ A}. The point

a = 0 in A maximizes this distance. Therefore ρ(A, b) = d(0, 22) = |22− 0| = 22.

Similarly, we find that ρ(B,A) = sup{d(b, 20) : b ∈ B}, since the point a = 20

will give the smallest distance to any point in B. The point b = 31 in B maximizes

this distance, so we have ρ(B,A) = d(20, 31) = |20− 31| = 11.

We will note that ρ(B,A) and ρ(A,B) are not always equal. It follows that

h(A,B) = max{ρ(A,B), ρ(B,A)} = 22.

Let us consider another example in (R, d) of discrete sets where the metric

d(x, y) = |x− y|.

Example Let A = {5n : 0 ≤ n ≤ 19} and B = {p : p < 100, p prime}. Since we

are working with discrete, finite subsets of the real number line, we find that r(p,A)

is equal to the minimum distance from any prime number p ∈ B to a multiple of 5

in the set A. That is, for any p ∈ B,

r(p,A) = min{|p− 5n| : 0 ≤ n ≤ 19}.
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Note that the minimum distance from any prime number to the nearest multiple

of 5 is either 2 or 1. For example, if p = 17, then we find that

r(17, A) = min{|17− 5n| : 0 ≤ n ≤ 19} = 2, when n = 3.

If p = 71, then

r(71, A) = min{|71− 5n| : 0 ≤ n ≤ 19} = 1, where n = 14.

Therefore we find that, for any point a ∈ A, ρ(B,A) = max{r(b, A) : b ∈ B} = 2.

In other words, ρ(B,A) is equal to the maximum of the minimum distances from

a prime p in the set B to the multiples of 5 in the set A.

Similarly, we find that ρ(A,B) is equal to the maximum of the minimum dis-

tances from each multiple of 5 in the set A to the set of primes in the set B. Thus

r(a,B) is equal to the minimum distance from any multiple of 5 in the set A to a

prime number p ∈ B. There is no efficient way to do this, except by looking at the

distances between each point in A to each point in B. . By looking at the distance

between all of the multiples of 5 to a prime number we find that the largest of

these minimum distances occurs at the point 50 ∈ A and 47, 53 ∈ B. Therefore

h(A,B) = max{ρ(A,B), ρ(B,A)} = max{3, 2} = 3.

Now consider the following example of r, ρ, and h in the complete metric space

(R2, d), where d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

Example Let A and B be subsets of R2 defined by A = {(x, y) : x2 + y2 ≤ 1} and

B = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 1} [see Figure 1].

By definition, r(x,A) = inf{d(x, a) : a ∈ A}. So r(x,A) is the set of all distances

from each x ∈ B to the “closest” point a ∈ A to x. Note that x will be an ordered

pair, as are a and b.

If b ∈ A ∩ B, then it is clear that r(b, A) = 0. If b ∈ B\A, then r(b, A) is found

using the line from b to the origin [see Figure 2]. We find that the point that yields

the largest distance is the upper right vertex of the rectangle at the point (3, 1).

Therefore, ρ(B,A) is equal to the distance from the point

(
3√
10
,

1√
10

)
on the

circle to the point (3, 1).
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Figure 1. Graph of A and B in (R2, d).

Figure 2. Area shaded contains all points that give the infimum
distance r(a,B) = 0. Additionally, we find ρ(A,B) = 1 and

ρ(B,A) =
√

10− 1.

Thus,

ρ(B,A) = d

((
3√
10
,

1√
10

)
, (3, 1)

)
=
√

10− 1.

Now we must find ρ(A,B). We find that we can use any of the points in the

bottom lower left quadrant on the unit circle. Let us choose the point (−1, 0). Then

ρ(A,B) = d
(

(−1, 0) , (0, 0)
)

= 1.

Therefore, the Hausdorff distance is h(A,B) = max{1,
√

10− 1} =
√

10− 1.

The next example is also in the metric space (R2, d) with the same metric d from

the previous example. However, this time we will consider two subsets of the plane

that do not intersect.
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Example Let A and B be sets defined by A = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and

let B = {(x, y) : 3 ≤ x ≤ 5, 0 ≤ y ≤ 4} [see Figure 3].

Figure 3. The sets A and B in (R2, d).

If (a1, a2) ∈ A, then r
(
(a1, a2), B)

)
= d
(
(a1, a2), (3, a2)

)
= 3− a1. Since

0 ≤ a1 ≤ 1, we find that ρ(A,B) = 3.

If (b1, b2) ∈ B, then r
(
(b1, b2), A)

)
= d

(
(b1, b2), (1, a2)

)
, where 0 ≤ a2 ≤ 1,

which varies with our choice of (b1, b2). We find that the point that maximizes r is

b = (5, 4) such that ρ(B,A) = d
(
(5, 4), (1, 1)

)
= 5.

Therefore, the Hausdorff distance is given by h(A,B) = ρ(B,A) = 5.

Now that we have gained a knowledge on how r, ρ, and h work in a few special

cases, we prove some basic properties of r and ρ.

Theorem 1. Let x ∈ X and let A,B,C ∈ K.

(1) r(x,A) = 0 if and only if x ∈ A.

(2) ρ(A,B) = 0 if and only if A ⊆ B.

(3) There exists ax ∈ A such that r(x,A) = d(x, ax).

(4) There exists a∗ ∈ A and b∗ ∈ B such that ρ(A,B) = d(a∗, b∗).

(5) If A ⊆ B, then r(x,B) ≤ r(x,A).

(6) If B ⊆ C, then ρ(A,C) ≤ ρ(A,B).

(7) ρ(A ∪B,C) = max{ρ(A,C), ρ(B,C)}.

(8) ρ(A,B) ≤ ρ(A,C) + ρ(C,B).
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Proof. We first prove Property (1). Suppose x ∈ A. Then the infimum distance is

d(x, a) = 0, where a = x. Now suppose that r(x,A) = 0. Then for each positive

integer n, there exists an ∈ A such that d(x, an) < 1
n . By definition {an} converges

to x. Since A is compact, it is closed. By Lemma 1 it follows that x ∈ A.

We now prove Property (2). Suppose A ⊆ B. Let a ∈ A. Since a ∈ B, by

Property (1) then r(a,B) = 0. Therefore ρ(A,B) =sup{0} = 0. To prove the

converse, suppose ρ(A,B) = 0. Let a ∈ A. Then 0 ≤ r(a,B) ≤ ρ(A,B) = 0, and

thus by Property (1), we find a ∈ B. It follows that A ⊆ B.

To prove Property (3), by definition of an infimum we can let {an} be a sequence

in A such that d(x, an) < r(x,A)+ 1
n . We know A is sequentially compact, so there

exists a subsequence {ank
} of {an} that converges to an element ax ∈ A. Then we

find that

r(x,A) ≤ d(x, ax) ≤ d(x, ank
) + d(ank

, ax) ≤ r(x,A) +
1

nk
+ d(ank

, ax).

Since lim
k→∞

( 1

nk
+ d(ank

, ax)
)

= 0, it follows that d(x, ax) = r(x,A).

To prove Property (4), by definition of a supremum we can let {an} be a sequence

in A such that ρ(A,B) is the limit of r(an, B). By Property (3) there exists a

sequence {bn} in B such that r(an, B) = d(an, bn). Since A is sequentially compact,

there exists a subsequence {ank
} of {an} that converges to an element a∗ ∈ A. Since

B is sequentially compact, there exists a subsequence {bnkj
} of {bnk

} that converges

to b∗. Since {bnkj
} converges to b∗ and {ankj

} converges to a∗, by Result 1, we

know that d(ankj
, bnkj

) converges to d(a∗, b∗). Therefore, it follows that

ρ(A,B) = lim
j→∞

r(ankj
, B) = lim

j→∞
r(ankj

, bnkj
) = d(a∗, b∗).

Thus it follows that d(a∗, b∗) = ρ(A,B).

Now we will prove Property (5). Suppose A ⊆ B and x ∈ X. Let a ∈ A. Since

A is a subset of B, we find that a ∈ B. It follows that

d(x, a) ≥ inf{d(x, b) : b ∈ B} = r(x,B).
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Since this is true for all a ∈ A, we find that r(x,A) = inf{d(x, a) : a ∈ A} ≥ r(x,B).

For Property (6), suppose B ⊆ C. By Property (5) then r(a,C) ≤ r(a,B) for

all a ∈ A. It follows that sup{r(a,C) : a ∈ A} ≤ sup{r(a,B) : a ∈ A} and thus

ρ(A,C) ≤ ρ(A,B).

For Property (7), by the definitions of r and ρ we see that

ρ(A ∪B,C) = sup{r(x,C) : x ∈ A ∪B}

= max{sup{r(x,C) : x ∈ A}, sup{r(x,C) : x ∈ B}}

= max{ρ(A,C), ρ(B,C)}.

We now turn to Property (8). Property (3) guarantees that for each a ∈ A there

exists ca ∈ C such that r(a,C) = d(a, ca). We then have

r(a,B) = inf{d(a, b) : b ∈ B}

≤ inf{d(a, ca) + d(ca, b) : b ∈ B}

= d(a, ca) + inf{d(ca, b) : b ∈ B}

= r(a,C) + r(ca, B)

≤ ρ(A,C) + ρ(C,B).

Since a ∈ A was arbitrary, taking the supremum, we find that

ρ(A,B) ≤ ρ(A,C) + ρ(C,B).

This completes the proof.

�

Note that by Property (4) of Theorem 1, there exist points a1 ∈ A and b1 ∈ B

such that ρ(A,B) = d(a1, b1) and alternatively there exist points a2 ∈ A and

b2 ∈ B such that ρ(B,A) = d(a2, b2). Since h(A,B) is just the maximum of

ρ(A,B) and ρ(B,A), it follows that there exist points a∗ ∈ A and b∗ ∈ B such that

h(A,B) = d(a∗, b∗).
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The following theorem shows that the Hausdorff distance defines a metric on K.

Theorem 2. The set K with the Hausdorff distance h define a metric space (K, h).

Proof. To prove that (K, h) is a metric space, we need to verify the following four

properties.

(1) h(A,B) ≥ 0 for all A,B ∈ K.

(2) h(A,B) = 0 if and only if A = B.

(3) h(A,B) = h(B,A) for all A,B ∈ K.

(4) h(A,B) ≤ h(A,C) + h(C,B) for all A,B,C ∈ K.

To prove the first property, since ρ(A,B) and ρ(B,A) are nonnegative, it follows

that h(A,B) ≥ 0 for all A,B ∈ K.

For the second property, suppose A = B. Therefore A ⊆ B and B ⊆ A. By

Property (2) of Theorem 1 we find that ρ(A,B) = 0 and ρ(B,A) = 0, and thus

h(A,B) = 0. Now suppose h(A,B) = 0. This implies ρ(A,B) = ρ(B,A) = 0. By

Property (2) of Theorem 1, we see that A ⊆ B and B ⊆ A and it follows that

A = B.

The third property can be proved from the symmetry of the definition since

h(A,B) = max{ρ(A,B), ρ(B,A)} = max{ρ(B,A), ρ(A,B)} = h(B,A).

The final property follows from the definition of ρ and h and from Property (8)

of Theorem 1. We find that

ρ(A,B) ≤ ρ(A,C) + ρ(C,B) ≤max{ρ(A,C), ρ(C,A)}+ max{ρ(C,B), ρ(B,C)}

=h(A,C) + h(C,B).

Similarly,

ρ(B,A) ≤ ρ(B,C) + ρ(C,A) ≤max{ρ(B,C), ρ(C,B)}+ max{ρ(C,A), ρ(A,C)}

=h(C,B) + h(A,C).

Therefore, h(A,B) = max{ρ(A,B), ρ(B,A)} ≤ h(A,C) + h(C,B). �
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Therefore we know that h defines a metric on K. In the next section, we will

look at examples of what this metric space might look like, and then proceed to

prove that if the metric space (X, d) is complete, then the metric space (K, h) is

also complete.

Examples of the Hausdorff Metric Space

Given a complete metric space (X, d), we have now constructed a new metric

space (K, h) from the nonempty, compact subsets of X using the Hausdorff metric.

Now it remains for us to prove that (K, h) is also complete. To be a complete

metric space, every Cauchy sequence in the space must converge to a point also in

the space. Therefore, when we think about the metric space (K, h), we are choosing

a sequence of nonempty, compact sets and showing that this sequence converges to

another nonempty, compact set. To better visualize the abstract mathematics we

are doing, consider the following two examples that demonstrate metric spaces of

nonempty, compact sets with the Hausdorff metric.

Example Let (R, d0) be the complete metric space, where d0 is the discrete metric,

d0(x, y) =


0, when x = y.

1, when x 6= y.

Since K is the set of all nonempty, compact subsets of (R, d0), we find that K is

the set of all nonempty finite subsets of R. The infinite sets are not in K because

they are not totally bounded and are thus not compact.

Furthermore, we may notice that

r(x,B) = inf{d0(x, b) : b ∈ B} = d0(x, b) =


0, when x ∈ B.

1, when x /∈ B.
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Therefore,

ρ(A,B) = sup{r(a,B) : a ∈ A} =


0, when a ∈ B.

1, when a /∈ B.
.

So it follows that

h(A,B) =


0, when A = B.

1, when A 6= B.

Therefore we have a metric space with the set K of the discrete subsets of R

with the Hausdorff metric as the discrete metric. It is easy to verify that our newly

created space is not totally bounded. However, we know all discrete metric spaces

are complete, so (K, h) is complete. Therefore, the space (K, h) of finite sets with

the discrete metric is an example of our Hausdorff induced metric space (K, h).

To illustrate our notion of completeness, now briefly consider a sequence of

nonempty compact sets that converges to the unit circle in R2. This is an ex-

ample a converging Cauchy sequence in the Hausdorff induced metric space that

converges to a set also in the space.

Example Let (R2, d) be the complete metric space where for x = (x1, x2) and for

y = (y1, y2), then d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

Let K be the set of all nonempy, compact subsets of R2, or in other words let K

be the set of all nonempty closed and bounded sets of R2. As we will later prove,

we know that since (R2, d) is complete, then the metric space (K, h) is complete.

To see an example of a Cauchy sequence in this space that converges to something

in the set, let us consider a sequence of sets converging to the unit circle.

For each positive integer k, let Ak = {(r, θ) : r = 1 + 1
k cos(kθ), 0 ≤ θ ≤ 2π}, and

let A be the unit circle in R2. It is easy to see that each Ak is in K. Examining

the Hausdorff distance between sets, we see that h(Ak, A) = 1
k .
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We can note that as k increases, the sets converge to the unit circle [See figures

6-8]. Therefore, {Ak} is an example of a Cauchy sequence that converges to A ∈ K.

Figure 4. The set A5 defined by r = 1 + 1
5 cos(5θ).

Figure 5. The set A20 defined by r = 1 + 1
20 cos(20θ).

Proving that the Metric (K, h) is Complete

As previously stated, to be a complete metric space, every Cauchy sequence in

(K, h) must converge to a point in K. Therefore, in order to prove that the metric

space (K, h) is complete, we will choose an arbitrary Cauchy sequence {An} in K

and show that it converges to some A ∈ K. Define A to be the set of all points

x ∈ X such that there is a sequence {xn} that converges to x and satisfies xn ∈ An
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Figure 6. The set A50 defined by r = 1 + 1
50 cos(50θ).

for all n. We will eventually show that the set A is an appropriate candidate.

However, we must begin with some important theorems regarding A.

Given a set A ∈ K and a positive number ε, we define the set A+ ε by

{x ∈ X : r(x,A) ≤ ε}. We need to show that this set is closed for all possible

choices of A and ε. To do this, we will begin by choosing an arbitrary limit point

of the set A+ ε, and then showing that it is contained in the set.

Proposition 1: A+ ε is closed for all possible choices of A ∈ K and ε > 0.

Proof. Let A ∈ K and ε > 0. Additionally, let x be a limit point of A + ε. Then

there exists a sequence {xn} of points in (A + ε)\{x} that converges to x. Since

xn ∈ A+ ε for all n, by definition r(xn, A) ≤ ε for all n. Property (3) of Theorem

1 guarantees that for each n there exists an ∈ A such that r(xn, A) = d(xn, an).

Thus d(xn, an) ≤ ε for all n. The set A is sequentially compact, so it follows from

the definition that each sequence {an} has a subsequence {ank
} that converges to

a point a ∈ A. Since {xn} converges to x, we know that any subsequence of {xn}

converges to x. Therefore, the subsequence {xnk
} converges to x. By Result 1,

then d(xnk
, ank

) converges to d(x, a). Note that {xnk
} and {ank

} are subsequences

of {xn} and {an}, respectively, so d(xnk
, ank

) ≤ ε for all k. Therefore, we find that

d(x, a) ≤ ε. By the definition of r(x,A), then r(x,A) ≤ ε, so x ∈ A + ε by our
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definition of A+ ε. Since x was an arbitrary limit point, then A+ ε is a closed set

since it contains all of its limit points. �

As an example where the set A+ ε is not compact, consider the set R with the

discrete metric. Let A be any nonempty finite set and choose ε > 1. Then the set

A+ ε = R is closed, but not totally bounded and is therefore is not compact.

To show (K, h) is complete, we will need to show that A ∈ K, and that {An}

converges to A. By our definition of convergence, we must show that there exists

a positive integer N such that h(An, A) < ε for all n ≥ N . However, the following

theorem gives us an alternative way of proving convergence.

Theorem 3. Suppose that A,B ∈ K and that ε > 0. Then h(A,B) ≤ ε if and only

if A ⊆ B + ε and B ⊆ A+ ε.

Proof. By symmetry, it is sufficient to prove ρ(B,A) ≤ ε if and only if B ⊆ A+ ε.

Suppose B ⊆ A+ ε. By definition of the set A+ ε, for every b ∈ B then r(b, A) ≤ ε.

It follows that ρ(B,A) ≤ ε. Now suppose ρ(B,A) ≤ ε. Then for every b ∈ B then

r(b, A) ≤ ε. It follows by definition of the set A+ ε, that B ⊆ A+ ε. �

Extension Lemma: Let {An} be a Cauchy sequence in K and let {nk} be an

increasing sequence of positive integers. If {xnk
} is a Cauchy sequence in X for

which xnk
∈ Ank

for all k, then there exists a Cauchy sequence {yn} in X such

that yn ∈ An for all n and ynk
= xnk

for all k.

Proof. Suppose {xnk
} is a Cauchy sequence in X for which xnk

∈ Ank
for all k.

Define n0 = 0. For each n that satisfies nk−1 < n ≤ nk, use Property 3 to choose

yn ∈ An such that r(xnk
, An) = d(xnk

, yn). Then we find, using the definitions of

ρ and r that

d(xnk
, yn) = r(xnk

, An) ≤ ρ(Ank
, An) ≤ h(Ank

, An).

Note that since xnk
∈ Ank

, then d(xnk
, ynk

) = r(xnk
, Ank

) = 0. It follows that

ynk
= xnk

for all k.
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Let ε > 0. Since {xnk
} is a Cauchy sequence in X, there exists a positive integer

K such that d(xnk
, xnj ) < ε

3 for all k, j ≥ K. Since {An} is a Cauchy sequence in

K, by definition there exists a positive integer N ≥ nK such that h(An, Am) < ε
3

for all n,m ≥ N . Suppose that n,m ≥ N . Then there exists integers j, k ≥ K such

that nk−1 < n ≤ nk, and nj−1 < m ≤ nj . Then we find that

d(yn, ym) ≤ d(yn, xnk
) + d(xnk

, xnj
) + d(xnj

, ym)

= r(xnk
, An) + d(xnk

, xnj
) + r(xnj

, Am)

≤ ρ(Ank
, An) + d(xnk

, xnj ) + ρ(Anj , Am)

≤ h(Ank
, An) + d(xnk

, xnj
) + h(Anj

, Am)

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore, by definition and from our earlier set up, {yn} is a Cauchy sequence in X

such that yn ∈ An for all n and ynk
= xnk

for all k. This completes the proof. �

The following Lemma makes use of the Extension Lemma to guarantee that A

is closed and nonempty. We will need this fact in proving that A is in K, since we

must show that A is a nonempty, compact subset of K. This Lemma gives us that

A is closed and nonempty. Since closed and totally bounded sets are compact, it

remains to show that A is totally bounded.

Lemma 2: Let {An} be a sequence in K and let A be the set of all points x ∈ X

such that there is a sequence {xn} that converges to x and satisfies xn ∈ An for all

n. If {An} is a Cauchy sequence, then the set A is closed and nonempty.

Proof. We begin by proving that A is nonempty. Since {An} is a Cauchy sequence,

there exists an integer n1 such that h(Am, An) < 1
21 = 1

2 for all m,n ≥ n1. Sim-

ilarly, there exists an integer n2 > n1 such that h(Am, An) < 1
22 = 1

4 for all

m,n ≥ n2. Continuing this process we have an increasing sequence {nk} such that

h(Am, An) < 1
2k

for all m,n ≥ nk. Let xn1
be a fixed point in An1

. By Property 2



PROVING COMPLETENESS OF THE HAUSDORFF INDUCED METRIC SPACE 19

of Theorem 2, we can choose xn2
∈ An2

such that d(xn1
, xn2

) = r(xn1
, An2

). Then

by definition of r, ρ, and h we find that

d(xn1 , xn2) = r(xn1 , An2) ≤ ρ(An1 , An2) ≤ h(An1 , An2) < 1
2 .

Similarly we can choose xn3 ∈ An3 such that

d(xn2 , xn3) = r(xn2 , An3) ≤ ρ(An2 , An3) ≤ h(An2 , An3) < 1
4 .

Continuing this process we can construct a sequence {xnk
} where each xnk

∈ Ank

and for all k,

d(xnk
, xnk+1

) = r(xnk
, Ank+1

) ≤ ρ(Ank
, Ank+1

) ≤ h(Ank
, Ank+1

) < 1
2k

.

By Result 2 {xnk
} is a Cauchy sequence.

Therefore, since {xnk
} is a Cauchy sequence and xnk

∈ Ank
for all k, by the

Extension Lemma there exists a Cauchy sequence {yn} in X such that yn ∈ An

for all n and ynk
= xnk

for all k. Since X is complete, the Cauchy sequence {yn}

converges to a point y ∈ X. Since yn ∈ An for all n, then by definition of the set,

y ∈ A. Therefore A is nonempty.

Now we will prove that A is closed. Suppose a is a limit point of A. Then there

exists a sequence ak ∈ A\{a} that converges to a. Since each ak ∈ A, there exists a

sequence {yn} such that {yn} converges to ak and yn ∈ An for each n. Consequently,

there exists an integer n1 such that xn1 ∈ An1 and d(xn1 , a1) < 1. Similarly,

there exists an integer n2 > n1 and a point xn2
∈ An2

such that d(xn2
, a2) < 1

2 .

Continuing this process we can choose an increasing sequence {nk} of integers such

that d(xnk
, ak) < 1

k for all k. Then it follows that

d(xnk
, a) ≤ d(xnk

, ak) + d(ak, a).

Note that as we take k to infinity, the distance between {xnk
} and a converges to

zero, so it follows that {xnk
} converges to a. Every convergent sequence is Cauchy,

so it follows that {xnk
} is a Cauchy sequence for which xnk

∈ Ank
for all k. The

Extension Lemma guarantees that there exists a Cauchy sequence {yn} in X such

that yn ∈ An for all n and ynk
= xnk

. Therefore a ∈ A, so A is closed. �
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With the previous lemma, to prove A ∈ K, it only remains to show that A is

totally bounded. The following lemma will allow us to do so.

Lemma 3: Let {Dn} be a sequence of totally bounded sets in X and let A be

any subset of X. If for each ε > 0, there exists a positive integer N such that

A ⊆ DN + ε, then A is totally bounded.

Proof. Let ε > 0. Choose a positive integer N so that A ⊆ DN + ε
4 . Since DN is

totally bounded, by definition we can choose a finite set {xi : 1 ≤ i ≤ q} where

xi ∈ DN such that DN ⊆
q⋃
i=1

Bd(xi,
ε

4
). By reordering the xi’s, we may assume

that Bd(xi,
ε
2 ) ∩ A 6= ∅ for 1 ≤ i ≤ p and Bd(xi,

ε
2 ) ∩ A = ∅ for p < i. Then for

each 1 ≤ i ≤ p, let yi ∈ Bd(xi, ε2 ) ∩A. We claim that A ⊆
p⋃
i=1

Bd(yi, ε). Let a ∈ A.

Then a ∈ DN + ε
4 , so r(a,DN ) ≤ ε

4 . By Theorem 1 Property (3), then there exists

x ∈ DN such that d(a, x) = r(a,DN ). Then we find that

d(a, xi) ≤ d(a, x) + d(x, xi) ≤
ε

4
+
ε

4
=
ε

2
.

So x ∈ Bd(xi, ε2 ) for some 1 ≤ i ≤ p. Thus we have yi ∈ Bd(xi, ε2 ) ∩A such that

d(xi, yi) <
ε
2 . It follows that

d(a, yi) ≤ d(a, xi) + d(xi, yi) <
ε

2
+
ε

2
= ε.

Therefore since for each a ∈ A we found yi for 1 ≤ i ≤ p such that a ∈ Bd(yi, ε),

then it follows that A ⊆
p⋃
i=1

Bd(yi, ε). Thus by definition, A is totally bounded.

This completes the proof. �

Finally, we have the foundation to prove our final result. Given a complete metric

space (X, d), we constructed the metric space (K, h) from the nonempty compact

subsets of X using the Hausdorff metric. After examining important theorems and

results, we can now prove our main goal.
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Theorem 4. If (X, d) is complete, then (K, h) is complete.

Proof. Let {An} be a Cauchy sequence in K, and define A to be the set of all points

x ∈ X such that there is a sequence {xn} that converges to x and satisfies xn ∈ An

for all n. We must prove that A ∈ K and {An} converges to A.

By Lemma 2, the set A is closed and nonempty. Let ε > 0. Since {An} is Cauchy

then there exists a positive integer N such that h(An, Am) < ε for all m,n ≥ N .

By Theorem 3 then Am ⊆ An + ε for all m > n ≥ N . Let a ∈ A. Then we want to

show a ∈ An+ε. Fix n ≥ N . By definition of the set A, there exists a sequence {xi}

such that xi ∈ Ai for all i and {xi} converges to a. By Proposition 1 we know that

An + ε is closed. Since xi ∈ An + ε for each i, then it follows that a ∈ An + ε. This

shows that A ⊆ An + ε. By Lemma 3, the set A is totally bounded. Additionally,

we know A is complete, since it is a closed subset of a complete metric space. Since

A is nonempty, complete and totally bounded, then A is compact and thus A ∈ K.

Let ε > 0. To show that {An} converges to A ∈ K, we need to show that there

exists a positive integer N such that h(An, A) < ε for all n ≥ N . To do this,

Theorem 3 tells us that we need to show two conditions, that A ⊆ An + ε and

An ⊆ A + ε. From the first part of our proof, we know there exists N such that

A ⊆ An + ε for all n ≥ N .

To prove An ⊆ A+ ε, let ε > 0. Since {An} is a Cauchy sequence, we can choose

a positive integer N such that h(Am, An) < ε
2 for all m,n ≥ N . Since {An} is a

Cauchy sequence in K, there exists a strictly increasing sequence {ni} of positive

integers such that n1 > N and such that h(Am, An) < ε2−i−1 for all m,n > ni.

We can use Property (3) of Theorem 1 to get the following:

since An ⊆ An1
+ ε

2 , there exists xn1
∈ An1

such that d(y, xn1
) ≤ ε

2 .

since An1
⊆ An2

+ ε
4 , there exists xn2

∈ An2
such that d(xn1

, xn2
) ≤ ε

4 .

since An2 ⊆ An3 + ε
8 , there exists xn3 ∈ An3 such that d(xn2 , xn3) ≤ ε

8 .

By continuing this process we are able to obtain a sequence {xni} such that for all

positive integers i then xni
∈ Ani

and d(xni
, xni+1

) ≤ ε2−i−1. By Result 2 we find
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{xni
} is a Cauchy sequence, so by the Extension Lemma the limit of the sequence

a is in A. Additionally we find that

d(y, xni) ≤ d(y, xn1) + d(xn1 , xn2) + d(xn2 , xn3) + · · ·+ d(xni−1 , xni)

≤ ε

2
+
ε

4
+
ε

8
+ · · ·+ ε

2i
< ε

Since d(y, xni
) ≤ ε for all i, it follows that d(y, a) ≤ ε and therefore y ∈ A + ε.

Thus we know that there existsN such thatAn ⊆ A+ε, so it follows that h(An, A) <

ε for all n ≥ N and thus {An} converges to A ∈ K. Therefore, if (X, d) is complete,

then (K, h) is complete.

�

We will now prove that if X is compact, then K is compact. Note that a metric

space is compact if and only if it is complete and totally bounded.

Theorem 5. If (X, d) is compact, then (K, h) is compact.

Proof. By previous result we know that K is complete. Since we know that a set

is compact if and only if it is complete and totally bounded, we must prove that

K is totally bounded. Let ε > 0. Since X is totally bounded, there exists a finite

set {xi : 1 ≤ i ≤ n} such that X ⊆
n⋃
i=1

Bd
(
xi,

ε
3

)
and xi ∈ X for each i. Let

{Ck : 1 ≤ k ≤ 2p − 1} be the collection of all possible nonempty unions of the

closures of these balls. Since X is compact, the closure of each ball is a compact

set. Therefore, each Ck is a finite union of compact sets and thus compact, so

Ck ∈ K. We want to show that K ⊆
2p−1⋃
k=1

Bh(Ck, ε).

To do this, let Z ∈ K. Then we want to show that Z ∈ Bh(Ck, ε) for some k.

Choose SZ = {i : Z ∩Bd(xi, ε) 6= ∅}. Then choose an index j so that

Cj =
⋃
i∈SZ

Bd
(
xi,

ε
3

)
. Since Z ⊆ Cj , then by Property (2) of Theorem 1 then we

know ρ(Z,Cj) = 0. Now let c be an element in Cj . Then there exists some i ∈ SZ

and z ∈ Z such that c, z ∈ Bd
(
xi,

ε
3

)
. This implies that r(c, Z) ≤ 2

3ε. Since our

choice of c was arbitrary, then we find that ρ(Cj , Z) ≤ 2
3ε. Therefore, we find
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that h(Z,Cj) = ρ(Cj , Z) < ε, and thus Z ⊆ Bh(Cj , ε), so K is totally bounded.

Therefore, we have proved that if (X, d) is compact, then (K, h) is compact.

�

Conclusions

The Hausdorff distance is a measure that assigns a nonnegative real number as

the distance between sets. We investigated this distance through several examples.

Then, given a metric space (X, d), we found that the Hausdorff distance defines a

metric on the space K of all nonempty compact subsets of X. We explored some of

the nice qualities of this metric. Most importantly, that if (X, d) is complete, then

(K, h) is complete. In addition, we proved that if (X, d) is compact, then (K, h) is

totallycompact, which is a truly remarkable result.
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