Reactions of Electron-Deficient Triosmium Clusters with Diazomethane: Electrochemical Properties and Computational Studies of Charge Distribution

Md. Abdul Mottalib, Noorjahan Begum, S. M. Tareque Abedin, Tahmina Akter, Shariff E. Kabir,* and Md. Arzu Miah

Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Dalia Rokhsana and Edward Rosenberg*

Department of Chemistry, University of Montana, Missoula, Montana 59812

G. M. Golzar Hossain

Department of Chemistry, University of Wales Cardiff, P.O. Box 912, Park Place, Cardiff CF1 3TB, U.K.

Kenneth I. Hardcastle

Department of Chemistry, Emory University, Atlanta, Georgia 30322

Received May 12, 2005

The 46-electron quinoline triosmium clusters $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -C₉H₅(R)N) (**6**, R = 4-CH₃; 7, R = H) react with excess CH₂N₂ at 0 to 25 °C to give $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -CHC₉H₅(R)N) $(10, R = 4-CH_3; 11, R = H)$, formed by insertion and subsequent C-H oxidative addition of a CH_2 moiety into the ring C(8)-Os bond. In contrast, the related 46-electron quinoxaline compound $(\mu$ -H)Os₃(CO)₉ $(\mu_3-\eta^2$ -C₈H₅N₂) (8) reacts with excess CH₂N₂ at 0 to 25 °C to give $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3-\eta^2$ -CHC₈H₄(5-CH₃)N₂) (12), where two CH₂ groups have inserted into the C(5)-H bond as well as the C(8)-Os bond, and $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3-\eta^2$ -CHC₈H₅N₂) (13), the analogue of 11. The 5-methylquinoxaline compound $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -C₈H₄(5-CH₃)N₂) (9) reacts with diazomethane at 0 to 25 °C to give 12 and $Os_3(CO)_9(\mu_3-\eta^2-C_8H_4(5-CH_3)N_2)$ - $(\mu$ -CH₃)(CH₃) (14), containing an edge-bridging methylene group and a σ -bound methyl group. Thermolysis of **10** and **11** at 98 °C yields $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3$ - η^2 -C(C₉H₅)(R)N) (**15**, R = 4-CH₃; **16**, R = H), $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -C(C₉H₅)(R)N) (**17**, R = 4-CH₃; **18**, R = H), and $(\mu$ -H)Os₄- $(CO)_{11}(\mu_3-\eta^2-C(C_9H_5)(R)N)$ (**19**, R = 4-CH₃; **20**, R = H). The trihydrides **15** and **16** are formed by a further C-H activation of the coordinated methylidene group of **10** and **11**, respectively. Thermolysis of 10 and 11 in the presence of H_2 at 1 atm at 80 °C gives 15 and 16 in high yields. The solid-state structure of 17 reveals that the methylidyne carbon atom has a significant bonding interaction with the osmium atom coordinated to nitrogen. Thermolysis of **12** and **13** at 98 °C gives $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -CC₈H₄(R)N₂) (**21**, R = 5-CH₃; **22**, R = H), whereas a similar thermolysis in the presence of H₂ (1 atm) at 80 °C gives $(\mu$ -H)₃Os₃(CO)₈- $(u_3-\eta^2-CC_8H_4(5-CH_3)N_2)$ (23, R = 5-CH₃; 24, R = H). The compounds 12, 13, 23, and 24 all show one-electron reversible reductions, and the reduction potentials are similar to previously studied quinoxaline clusters. DFT calculations show that most of the spin density is confined to the heterocyclic ligand, and this explains the similarity between the observed reduction potentials for the products with different bonding modes to cluster but containing the same heterocycle. The qualitative correlation between the calculated natural charges and the distribution of unpaired spin densities in 12 and 13 corroborate this conclusion. The molecular structures of 10, 12, 13, 17, and 20 have been determined by single-crystal X-ray diffraction studies.

Introduction

Organic diazo compounds are highly reactive substrates having several reaction centers in one molecule.^{1,2} This makes them promising reagents for the synthesis of functionalized organometallic complexes. Reactions of diazoalkanes with transition metal complexes often result in the formation of carbene complexes with concurrent liberation of N_2 .^{3,4} This is a key reaction in catalytic processes such as carbene insertion into C-H bonds, cyclopropanation of olefins, Fischer-Trop-

Lemenovskii, D. A.; Putala, M.; Nikonov, G. I.; Kazennova, N. B.; Yufit, D. S.; Struchkov, Yu. T. J. Organoment. Chem. 1993, 454, 123, and references therein.

⁽²⁾ Mizobe, Y.; Ishii, Y.; Hidai, M. Coord. Chem. Rev. 1995, 139, 281, and references therein.

sch synthesis, and alkyne isomerization.⁵ The reactions of diazoalkanes with both coordinatively unsaturated and saturated trimetallic complexes of osmium, ruthenium, and iron have been investigated by several groups and have been found to give many interesting compounds with various coordination modes.⁶⁻²¹ For example, the saturated triosmium acetonitrile compound $Os_3(CO)_{11}(MeCN)$ reacts with CH_2N_2 to yield $Os_3(\mu$ -CO)- $(CO)_{10}(\mu$ -CH₂),^{6,7} whereas the coordinatively unsaturated cluster $(\mu$ -H)₂Os₃(CO)₁₀ gives $(\mu$ -H)₂Os₃(CO)₁₀- $(\mu$ -CH₂), which exists in equilibrium with $(\mu$ -H)Os₃- $(CO)_{10}(\mu$ -CH₃).⁸ The parent iron compound, Fe₃(CO)₁₂, reacts with diphenyldiazomethane to give Fe₃(CO)₉- $(NNCPh_2)_2$, containing the μ_3 - η^1 -diazoalkane ligand.⁹ On the contrary, the ruthenium analogue, Ru₃(CO)₁₂, reacts with diazomethane to give $\operatorname{Ru}_3(\mu$ -CO)(CO)_{10}(\mu-CH₂), which rearranges to the hydrido ketenylidene compound $(\mu-H)_2Ru_3(CO)_9(\mu-CCO)$ at 45 °C. The latter reacts further with CH_2N_2 to give the C-C coupling product, $(\mu-H)_2Ru_3(CO)_9(CCH_2)$.¹⁰ The dppm-substituted compound, $Ru_3(CO)_{10}(\mu$ -dppm), reacts with CH_2N_2 to afford the μ -methylene compound, Ru₃(CO)₇(μ_3 - η^3 -C(O)CH₂)- $(\mu$ -CH₂)(μ -dppm), which readily reacts with CO to give the dinuclear complex, $Ru_2(CO)_5(\mu-\eta^4-CH_2C(O)CH_2)$ - $(\mu$ -dppm).¹¹ There have been several reports on the coupling of μ_3 -imidoyls¹⁹ or μ_3 -alkynes^{14,18} with μ -methylenes or η^1 -carbenes²² in trinuclear clusters of osmium and ruthenium. For example, the μ_3 -imidoyl clusters (μ -H)- $Os_3(CO)_9(\mu_3-\eta^2-C=NCH_2CH_2CH_2-)$ react with CH_2N_2 to afford $(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-CH-C=NCH_2CH_2CH_2-)$, in which a methylene fragment has inserted into the

- (b) Gallop, M. A.; Roper, W. R. Adv. Organomet. Chem. 1986, 25, 121.
 (5) Gambarotta, S.; Bert, M. B.; Floriani, C.; Guastrini, A. J. Chem.
- (6) Shapley, J. R.; Sievert, A. C.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1981, 103, 6975.
 (7) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Sankey, S. W. J.
- (1) Jonnison, D. F. G., Zerry, J.
 Organomet. Chem. 1982, 231, C65.
 (8) (a) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1977, 99,
 (8) (a) Calvert, R. B.; Chem. J. P. J. Am. Chem. Soc. 1978, 100,
- 5225. (b) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. **1978**, 100, 7726. (c) Calvert, R. B.; Shapley, J. R.; Schultz, A. J.; Williams, J. M.; Sub, S. L.; Stucky, G. D. J. Am. Chem. Soc. **1978**, 100, 6240. (d) Shultz,
- A. J.; Williams, J. M.; Calvert, R. B.; Shapley, J. R.; Stucky, G. D. Inorg. Chem. 1979, 18, 319.
- (9) Baikie, P. E.; Mills, O. S. J. Chem. Soc., Chem. Commun. 1967, 1228
- (10) Holmgren, J. S.; Shapley, J. R. Organometallics 1985, 4, 793. (11) Holmgren, J. S.; Shapley, J. R.; Wilson, S. R.; Pennington, W. T. J. Am. Chem. Soc. 1986, 108, 508.
- (12) Keijsper, J.; Polm, L. H.; Koten, G. van; Vrieze, K.; Goubitz, K.; Stam, C. H. Organometallics 1985, 4, 1876.
- (13) Nucciarone D.; MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organometallics 1988, 7, 106.
- (14) Nucciarone, D.; Taylor, N. J.; Carty, A. J. Organometallics 1984, 3, 177.
- (15) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Sankey, S. W. J. Organomet. Chem. 1982, 231, C65.
- (16) Farrugia, L. J.; Green, M.; Hankey, D. R.; Murray, M.; Orpen, A. G.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1985, 177.
- (17) Green, M.; Hankey, D. R.; Murry, M.; Orpen, A. G.; Stone, F.
- G. A. J. Chem. Soc., Chem. Commun. 1981, 689.
 (18) Clauss, A. D.; Shapley, J. R.; Wilson, J. R. J. Am. Chem. Soc. 1981, 103, 7387
- (19) Day, M.; Freeman, W.; Hardcastle, K. I.; Tsomaki, M.; Kabir, S. E.; McPhillips, T.; Rosenberg, E.; Scott, L. G.; Wolf, E. Organome-
- tallics 1992, 11, 3376.
- (20) Abedin, S. M. T.; Hardcastle, K. I.; Kabir, S. E.; Malik, K. M. A.; Mottalib, Md. A.; Rosenberg, E.; Abedin, Md. J. Organometallics 2000, 19, 5623.
- (21) Kabir, S. E.; Malik, K. M. A.; Mandal, H. S.; Mottalib, Md. A.; Abedin, Md. J.; Rosenberg, E. Organometallics 2002, 21, 2593.
- (22) Beans, L. R.; Keister, J. B. Organometallics 1985, 4, 1713.

carbon-metal σ -bond of the imidovl ligand and undergone a C-H oxidative addition.¹⁹

We have been investigating the reactivity of a novel class of electron-deficient complexes of the general formula $(\mu$ -H)Os₃(CO)₉ $(\mu_3 - \eta^2$ -L-H) (L = benzoheterocycle) where the electron deficiency arises from the presence of a three-center two-electron bond β to the coordinated pyridinyl nitrogen.²³ The reactions of these complexes with neutral nucleophiles such as phosphines and amines result in ligand addition at the metal core,^{23a,b} while with anionic nucleophiles such as hydride or carbanions nucleophilic addition is at the carbocyclic ring.^{23c,24} Most recently, we have demonstrated that despite their structural similarities, the reactivity of these complexes is sensitive to the nature of the heterocyclic ring.^{24,25}

In a preliminary communication we reported²⁰ that the coordinately unsaturated compound $(\mu$ -H)Os₃(CO)₈- $\left(Ph_{2}PCH_{2}P(Ph)C_{6}H_{4}\right)\left(1\right)$ reacts with $CH_{2}N_{2}$ to give the novel compound $(\mu$ -H)₂Os₃(CO)₇ $(\mu_3$ -CN₂ $)(\mu$ -dppm) (2), which reacts with CO and H₂O to give $(\mu$ -H)₃Os₃(CO)₇- $(\mu_3$ -CCOOH) $(\mu$ -dppm) (3) (Scheme 1). We have also reported²¹ that in the case of the unsaturated cluster $(\mu-H)Os_3(CO)_9(\mu_3-\eta^2-C_7H_3(2-CH_3)NS)$ (4) the reaction with diazomethane proceeds in a completely different way to give $Os_3(CO)_9(\mu - \eta^2 - C_7H_3(2 - CH_3)NS)(\mu - CH_2)CH_3$ (5), containing an edge-bridging methylene group and

(24) Rosenberg, E.; Kabir, S. E.; Abedin, Md. J.; Hardcastle, K. I. Organometallics 2004, 23, 3982.

(25) (a) Nervi, C.; Gobetto, R.; Milone, L.; Viale, A.; Rosenberg, E.; Rokhsana, D.; Fiedler, J. *Chem. Eur. J.* 2003, 9, 5749. (b) Rosenberg, E.; Rokhsana, D.; Nervi, C.; Gobetto, R.; Milone, L.; Viale, A.; Fiedler, J.; Botavina, M. A. *Organometallics* 2004, 23, 215. (c) Rosenberg, E.; Abedin, M. J.; Rokhsana, D.; Viale, A.; Dastru', W.; Gobetto, R.; Milone, L.; Hardcastle, K. I. Inorg. Chim. Acta 2002, 334, 343.

^{(3) (}a) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 800. (b) Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159.
 (4) (a) Feldman, J.; Schrock, R. R. Prog. Inorg. Chem. 1991, 39, 1.

^{(23) (}a) Kabir, S. E.; Kolwaite, D. S.; Rosenberg, E.; Hardcastle, K. I.; Cresswell, W.; Grindstaff, J. Organometallics 1995, 14, 3611. (b) Arcia, E.; Rosenberg, E.; Kolwaite, D. S.; Hardcastle, K. I.; Ciurash, J.; Duque, R.; Gobetto, R.; Milone, L.; Osella, D.; Botta, M.; Dastru', W.; Viale, A.; Fiedler, J. Organometallics 1998, 17, 415. (c) Rosenberg, E.; Spada, F.; Sugden, K.; Martin, B.; Milone, L.; Gobetto, R.; Viale, A.; Fiedler, J. J. Organomet. Chem. 2003, 668, 51. (d) Abedin, M. J.; Bergman, B.; Holmquist, R.; Smith, R.; Rosenberg, E.; Ciurash, J.; Hardcastle, K. I.; Roe, J.; Vazquez, V.; Roe, C.; Kabir, S. E.; Roy, B.; Alam, S.; Azam, K. A. *Coord. Chem. Rev.* **1999**, *190–192*, 175. (e) Bergman, B.; Holmquist, R.; Smith, R.; Rosenberg, E.; Hardcastle, K. I.; Visi, M.; Ciurash, J. J. Am. Chem. Soc. **1998**, *120*, 12818. (f) Smith, R.; Rosenberg, E.; Hardcastle, K. I.; Vazquez, V.; Roh, J. Organometallics 1999, 18, 3519. (g) Bar Din, A. V.; Bergman, B.; Rosenberg, E.; Smith, R.; Dastru', W.; Gobetto, R.; Milone, L.; Viale, A. Polyhedron 1998, 17, 2975. (h) Rosenberg, E.; Abedin, Md. J.; Rokhsana, D.; Osella, D.; Milone, L.; Nervi, N.; Fiedler, J. Inorg. Chim. Acta 2000, 300-302.769.

a σ -bound methyl group²¹ (Scheme 2). The above observations suggested remarkable sensitivity of the regiochemistry of methylene addition toward the structure of the heterocycle and prompted us to examine the reactivity of the related 46-electron triosmium compounds $(\mu$ -H)Os₃(CO)₉ $(\mu_3 - \eta^2 - C_9H_5(R)N)$ (6, R = 4-CH₃; 7, R = H) and $(\mu$ -H)Os₃(CO)₉ $(\mu_3 - \eta^2 - C_8H_4(R)N_2)$ (8, R = H; 9, R = 5-CH₃) with diazomethane. We were particularly interested to see how the reactivity of these aza and diaza heterocycles with diazomethane compared with the previously reported thioaza heterocycles. We report here an examination of these reactions as well as an investigation of the electrochemical properties of the products in an attempt to gain a further understanding of how changes in the bonding mode of a complex organic molecule to a trimetallic core impacts its electron acceptor properties and the stability of the resulting radical anion. For the radical anions that were found to be stable on the cyclic voltammetry (CV) time scale we have performed ab initio density functional theory (DFT) calculations in order to elucidate the electron distribution in these systems.

Results and Discussion

In sharp contrast to the reaction of the 2-methylbenzothiazole triosmium compound **4** with CH_2N_2 , which afforded the μ -methylidene σ -methyl compound **5**,²¹ the reactions of the electron-deficient clusters **6** and **7** with excess CH_2N_2 at 0 to 25 °C give $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 - $CHC_9H_5(R)N)$ (**10**, R = 4-CH₃; **11**, R = H) in 80 and 85% yields, respectively (Scheme 3).

Figure 1. Molecular geometry of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -CHC₉H₅(4-CH₃)N), **10**, showing the calculated position of the hydrides. Thermal ellipsoids are drawn at the 50% probability level.

These compounds are presumably formed by insertion of the methylene group into the metal-carbon σ -bond of the quinoline ligands followed by C-H oxidative addition. In contrast, addition of excess ethereal diazomethane to a dichloromethane solution of the quinoxaline unsaturated compound **8** at 0 to 25 °C affords two new compounds, $(\mu$ -H)₂Os₃(CO)₉(μ_3 - η^2 -CHC₈H₄-(5-CH₃)N₂) (**12**) and $(\mu$ -H)₂Os₃(CO)₉(μ_3 - η^2 -CHC₈H₅N₂) (**13**), in 20 and 35% yields, respectively (Scheme 4). All the compounds have been characterized by spectroscopic data together with single-crystal X-ray diffraction analyses for **10**, **12**, and **13**.

The solid-state structures of 10 and 12 are shown in Figures 1 and 2, respectively, crystal data are given in Table 1, and selected bond distances and angles are summarized in Tables 2 and 3, respectively. The basic cores of both the molecules are the same, having a triangular metal framework of osmium atoms with three distinctly different osmium-osmium bond lengths (Os(1)-Os(2) = 2.7919(4), Os(2)-Os(3) = 2.9913(4), andOs(1)-Os(3) = 2.8323(4) Å for 10 and Os(1)-Os(2) =2.9959(7), Os(2) - Os(3) = 2.8070(7), and Os(1) - Os(3) =2.8283(7) Å for 12) and nine terminal carbonyl ligands, three on each metal atom. The hydride ligands for both 10 and 12 were located using the program WinGX.²⁶ In case of 10, the hydride ligand H(23) is located at the elongated Os(2)-Os(3) edge, which is also bridged by the heterocyclic ligand, $\mu_3-\eta^2$ -CHC₉H₅(4-CH₃)N, while the other hydride H(13) shares the same shortest

Figure 2. Molecular geometry of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -CHC₈H₄(5-CH₃)N₂), **12**, showing the calculated position of the hydrides. Thermal ellipsoids are drawn at the 50% probability level.

Os(1)-Os(2) edge as the alkylidene carbon and is welltucked well below the Os_3 triangle. Similarly, for 12, the hydrides are found to bridge the Os(1)-Os(2) and Os(1)-Os(3) edges of the Os triangle in which the Os(1)-Os(2) edge is bridged by the N atom of the heterocyclic ligand, μ_3 - η^2 -CHC₈H₄(5-CH₃)N₂, while the Os(1)-Os(3) edge is bridged by the methylidene carbon of the ligand. These observations are analogous to that reported for $(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-CHC=$ NCH₂CH₂CH₂-), in which metal-metal bonds bridged by heterocyclic and hydride ligands are significantly longer than the other bridging metal-metal bonds.¹⁹ The bridging positions of the hydrides in 10 are further supported by the orientation of carbonyl groups CO(3), CO(9), CO(4), and CO(7), which were essentially *trans* to the metal hydrogen bond vectors, maintaining approximately octahedral geometry. The μ -alkylidene carbon bridges Os(1) and Os(3) almost symmetrically (Os(1)-C(19) = 2.159(4), Os(3)-C(19) = 2.151(4) Å for10 and Os(1)-C(19) = 2.158(5), Os(3)-C(19) = 2.151-(5) Å), and the nitrogen is coordinated to Os(2) with Os(2)–N(1) bond lengths of 2.203(4) Å for 10 and 2.191-(4) Å for **12**, which are significantly longer than the corresponding bond length in 6 $(2.13(2) \text{ Å})^{23a}$ but is comparable to the Os–N bond length in $(\mu$ -H)Os₃(CO)₁₀- $(\mu-1, 8-\eta^2-C_9H_6N)$.²⁷ An intriguing feature of **12** is the presence of the 5-methyl group on the quinoxaline ring that most probably has been formed by insertion of a second methylene group into the C(5)-H bond of the quinoxaline ligand. Both clusters 10 and 12 contain 48 valence electrons, as expected for an electron-precise trinuclear cluster containing three metal-metal bonds, and each metal atom achieves an 18-electron configuration. The spectroscopic data for 10 and 12 are in accord with the solid-state structure, and the spectroscopic data for 11 indicate that it is a direct analogue of 10 and 12.

The solid-state structure of **13** is shown in Figure 3, crystal data are given in Table 1, and selected bond distances and angles are collected in Table 4. Compound 13 crystallizes in the triclinic space group with two crystallographically independent and enantiomeric molecules in the unit cell. Each molecule consists of an Os₃ triangle with three different metal-metal bonds and nine terminal carbonyl ligands, three bonded to each osmium atom. The molecules differ in the relative location of the cluster-bound hydride ligands. In molecule 1 (Figure 3), one of the hydrides bridges the unbridged Os(3) - Os(2) edge, which is supported by the observation that this edge is significantly elongated (3.0059(7) Å) compared to the methylidyne carbonbridged Os(3) - Os(1) edge (2.8365(7) Å). This edge is also spanned by the other hydride ligand. The heterocyclic ligand bridges the Os(2)-Os(1) edge (2.7986(7) Å). However, in molecule 2, one of the hydrides bridges the Os(2)-Os(1) edge, which is simultaneously bridged by the heterocyclic ligand and is also consistent with substantially elongated bond (2.9981(7) Å) compared to the other two Os-Os distances (Os(3)-Os(1) =2.8365(7), Os(2) - Os(3) = 2.8013(7) Å). As in molecule 1, the remaining hydride bridges the Os(3)-Os(1)edge, which is simultaneously bridged by the methylidene carbon atom, and the Os(3)-Os(1) distances in the two molecules are exactly the same (2.8365(7) Å in molecule 1 and 2.8365(7) Å in molecule 2). The dimensions of heterocyclic ligands in the two molecules are similar. Thus C(16)-N(2), C(17)-N(1), C(13)-C(14), and C(11)-C(12) bond distances in molecule 1 are 1.32(2), 1.357(17), 1.34(2), and 1.401(18) Å, respectively, while the corresponding distances in molecule 2 are 1.30(3), 1.321(2), 1.31(3), and 1.360(18) Å, respectively. The spectroscopic data of 13 are consistent with the solid-state structures.

The unusual formation of 12 from the above reaction was further substantiated by synthesizing the 5methyl quinoxaline electron-deficient compound $(\mu$ -H)- $Os_3(CO)_9(\mu_3-\eta^2-C_8H_4(5-CH_3)N (9)$ followed by reaction with CH_2N_2 . The reaction of **9** with excess diazomethane gives 12 and $Os_3(CO)_9(\mu_3-\eta^2-C_8H_4(5-CH_3)N_2)(\mu-CH_2)$ - (CH_3) (14) (Scheme 5) in 49 and 11% yields, respectively. Compound 14 has been characterized by elemental analysis and infrared and ¹H NMR spectroscopic data. The formation of 14 can be viewed as resulting from the insertion of a methylene group into one of the metal-metal bonds followed by the interaction of the second methylene with the cluster-bound bridging hydride. The reverse sequence, formation of a methyl group followed by reaction with a second methylene, is also possible. To our knowledge compound 14 provides the second example of a triosmium cluster containing both bridging methylene and σ -bonded methyl groups, the first being 5^{21}

Thermolysis of **10** and **11** at 98 °C affords two trinuclear compounds, $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3-\eta^2$ -C(C₉H₅)-(R)N) (**15**, R = 4-CH₃, 17%; **16**, R = H, 15%) and $(\mu$ -H)-Os₃(CO)₉ $(\mu_3-\eta^2$ -C(C₉H₅)(R)N) (**17**, R = 4-CH₃, 30%; **18**, R = H, 36%), and one tetranuclear compound, $(\mu$ -H)-Os₄(CO)₁₁ $(\mu_3-\eta^2$ -C(C₉H₅)(R)N) (**19**, R = 4-CH₃, 15%; **20**,

⁽²⁶⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.
(27) Akter, J.; Hossain, G. M. G.; Kabir, S. E.; Malik, K. M. A. J. Chem. Crystallogr. 2000, 12, 773.

Table 1. Crystal Data and Structure Refinement for 10, 12, 13, 17, and 20

	10	12	13
empirical formula	U ₂₀ π ₁₁ NU ₉ US ₃ 979 90		
temperature (K)	173(2)	173(2)	150(2)
wavelength Å	0.71073	0.71073	0.71073
cryst syst	triclinic	triclinic	triclinic
space group	$P\bar{1}$	$P\bar{1}$	$P\overline{1}$
unit cell dimens			
$a(\mathbf{A})$	9.6788(12)	9.487(2)	11.2089(4) 19.7597(5)
$O(\mathbf{A})$	10.4104(14) 11.5639(15)	10.269(3) 11 790(3)	12.7527(5) 15.4816(7)
α (deg)	100.764(3)	98.686(7)	85.582(2)
β (deg)	90.929(3)	90.684(9)	89.192(2)
γ (deg)	100.978(3)	99.636(7)	84.136(2)
$V(A^3)$	1122.8(3)	1118.6(5)	2194.83(15)
Z domaitry (m σ/m^3)	2 2 200	2 9 019	4
abs coeff (cm^{-1})	2.099 16 985	2.912	2.925 17 376
F(000)	876	876	1710
cryst size (mm)	0.22 imes 0.20 imes 0.16	0.40 imes 0.36 imes 0.22	0.25 imes 0.22 imes 0.18
θ range for data	1.80 to 28.33	1.75 to 28.29	2.16 to 26.38
collection (deg)			
limiting indices	$-12 \le h \le 12$	$-12 \le h \le 12$	$-14 \le h \le 14$
	$-13 \le R \le 13$ -15 < 1 < 15	$-13 \le R \le 13$ -15 < 1 < 15	$-10 \le R \le 10$ -10 < 1 < 10
no of reflues collected	11 751	15 327	$15 \le 1 \le 15$ 22.944
no. of indep reflns	$5571 [R_{int} = 0.025]$	$5533 [R_{int} = 0.0418]$	$8855 [R_{int} = 0.1045]$
refinement method	full-matrix least-squares on F^2	full-matrix least-squares on F^2	full-matrix least-squares on F^2
no. of data/restraints/params	5571/0/299	5533/0/299	8855/0/577
goodness-of-fit on F^2	1.035 $B = 0.0942 \dots B = 0.0578$	1.024	1.014
R indices (all data)	$R_1 = 0.0243, WR_2 = 0.0578$ $R_2 = 0.0270, WR_2 = 0.0589$	$R_1 = 0.0265, WR_2 = 0.0674$ $R_2 = 0.0292, WR_2 = 0.0688$	$R_1 = 0.0506, WR_2 = 0.1362$ $R_2 = 0.0750, WR_2 = 0.1479$
largest diff peak and	1.693 and -2.272	1.637 and -2.324	3.362 and -3.901
hole (e Å ⁻³)			
	1	7	20
ompinical formula			
PHIDITICALIOCHIMIA	CaoHoNOoOsa	C	01H7NO11OS4
fw	$C_{20}H_9NO_9Os_3 977.90$	C 12	$_{21}H_7NO_{11}Os_4$ 210.07
fw temperature (K)	$\begin{array}{c} {\rm C_{20}H_9NO_9Os_3}\\ 977.90\\ 150(2)\end{array}$	C 11 29	$_{21}H_7NO_{11}Os_4$ 210.07 93(2)
fw temperature (K) wavelength Å	$\begin{array}{c} {\rm C}_{20}{\rm H_9NO_9Os_3}\\ 977.90\\ 150(2)\\ 0.71069\end{array}$	C 11 29 0.	21H7NO ₁₁ Os ₄ 210.07 93(2) 71073
fw temperature (K) wavelength Å cryst syst	$C_{20}H_9NO_9Os_3$ 977.90 150(2) 0.71069 monoclinic	C 11 20 0. m	21H7NO ₁₁ Os ₄ 210.07 93(2) 71073 1000cclinic
fw fw temperature (K) wavelength Å cryst syst space group unit cell dimens	$C_{20}H_9NO_9Os_3$ 977.90 150(2) 0.71069 monoclinic $P2_1/n$	C 15 29 0. m P	21H7NO ₁₁ Os ₄ 210.07 93(2) .71073 100noclinic 2 ₁ /c
fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\end{array}$	C 15 29 0. m P	21H7NO ₁₁ Os ₄ 210.07 93(2) .71073 nonoclinic 2 ₁ /c 2.4821(2)
fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å)	$\begin{array}{c} \mathrm{C_{20}H_9NO_9Os_3}\\ 977.90\\ 150(2)\\ 0.71069\\ \mathrm{monoclinic}\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\end{array}$	C 15 29 0. m P 11 11	21H7NO ₁₁ Os ₄ 210.07 93(2) .71073 nonoclinic 2 ₁ /c 2.4821(2) 2.4363(2)
fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å)	$\begin{array}{c} \mathrm{C_{20}H_9NO_9Os_3}\\ 977.90\\ 150(2)\\ 0.71069\\ \mathrm{monoclinic}\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3) \end{array}$	C 15 29 0. m P 15 15 16	21H7NO11Os4 210.07 93(2) .71073 nonoclinic 21/c 2.4821(2) 2.4363(2) 6.2496(2)
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ \end{array}$	C 15 29 0. m P 15 15 16	21H7NO ₁₁ Os ₄ 210.07 93(2) .71073 nonoclinic 2 ₁ /c 2.4821(2) 2.4363(2) 6.2496(2)
fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) ψ (deg)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2) \end{array}$	C 15 29 0. m P 15 15 16 10	${}^{21}H_7NO_{11}Os_4$ ${}^{210.07}$ ${}^{93(2)}$ 71073 nonoclinic ${}^{21/c}$ ${}^{2.4821(2)}$ ${}^{2.4363(2)}$ ${}^{6.2496(2)}$ ${}^{04.0791(8)}$
fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ \end{array}$	C 15 29 0. m P 11 11 11 10 10 22	${}_{21}H_7NO_{11}Os_4$ ${}_{210.07}$ ${}_{93(2)}$.71073 nonoclinic ${}_{21/c}$ 2.4821(2) 2.4363(2) ${}_{6.2496(2)}$ 04.0791(8) 446 67(6)
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\end{array}$	C 15 29 0. m P 11 11 11 10 10 10 24 4	${}^{21}H_7NO_{11}Os_4$ ${}^{210.07}$ ${}^{93(2)}$.71073 nonoclinic ${}^{21/c}$ 2.4821(2) 2.4363(2) ${}^{6.2496(2)}$ 04.0791(8) 446.67(6)
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z density _{cale} (mg/m ³)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ \end{array}$	C 15 29 0. m P 11 11 11 10 10 10 24 4 3.	${}^{21}H_7NO_{11}Os_4$ ${}^{210.07}$ ${}^{93(2)}$ 71073 nonoclinic ${}^{2_1/c}$ ${}^{2.4821(2)}$ ${}^{2.4363(2)}$ ${}^{6.2496(2)}$ ${}^{04.0791(8)}$ ${}^{446.67(6)}$ 282
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z density _{cale} (mg/m ³) abs coefficient (cm ⁻¹)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ \end{array}$	C 15 29 0. m P 15 16 16 10 10 24 4 3. 20	${}_{21}H_7NO_{11}Os_4$ ${}_{210.07}$ ${}_{93(2)}$.71073 nonoclinic ${}_{21/c}$ 2.4821(2) 2.4363(2) ${}_{6.2496(2)}$ 04.0791(8) 446.67(6) .282 0.767
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{calc} (mg/m ³) abs coefficient (cm ⁻¹) F(000)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.905\\ 0.000 = 0\\ 0.000 = $	C 15 29 0. m P 15 16 10 10 20 4 3. 20 21	${}_{21}H_7NO_{11}Os_4$ ${}_{210.07}$ ${}_{93(2)}$.71073 nonoclinic ${}_{21/c}$ 2.4821(2) 2.4363(2) 6.2496(2) 04.0791(8) 446.67(6) 282 0.767 124 022 0.15 0.10
find to initial fix temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{calc} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ represented to a	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ to\ 25\ 06\end{array}$	C 15 19 29 0. m P 11 19 10 10 24 4 3. 20 21 .15 0.	${}_{21}H_7NO_{11}Os_4$ ${}_{210.07}$ ${}_{93(2)}$ ${}_{71073}$ ${}_{1000clinic}$ ${}_{21/c}$ ${}_{2.4821(2)}$ ${}_{2.4363(2)}$ ${}_{6.2496(2)}$ ${}_{04.0791(8)}$ ${}_{446.67(6)}$ ${}_{282}$ ${}_{0.767}$ ${}_{124}$ ${}_{22} \times 0.15 \times 0.12$ ${}_{68 to 27.51}$
find the formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{calc} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ range for data collection (deg)	$\begin{array}{c} \mathrm{C_{20}H_9NO_9Os_3}\\ 977.90\\ 150(2)\\ 0.71069\\ \mathrm{monoclinic}\\ P2_{1/n}\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ \mathrm{to}\ 25.06\end{array}$	C 15 19 29 0. m P 11 19 10 10 20 20 21 15 0.	$\begin{array}{l} {}_{21}\text{H}_{7}\text{NO}_{11}\text{Os}_{4} \\ {}_{210.07} \\ {}_{93(2)} \\ {}_{.71073} \\ {}_{1000clinic} \\ {}_{21/c} \\ {}_{2.4821(2)} \\ {}_{2.4363(2)} \\ {}_{6.2496(2)} \\ {}_{04.0791(8)} \\ {}_{446.67(6)} \\ {}_{282} \\ {}_{0.767} \\ {}_{124} \\ {}_{22} \times 0.15 \times 0.12 \\ {}_{68} \text{ to } 27.51 \\ \end{array}$
find the formula five temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{calc} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ range for data collection (deg) limiting indices	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25 \times 0.22 \times 0\\ 1.98 \text{ to } 25.06\\ -10 \leq h \leq 17 \end{array}$	C 15 29 0. m P 11 12 12 12 10 10 24 4 3. 20 21 1. 15 0.	${}_{21}H_7NO_{11}Os_4$ ${}_{210.07}$ ${}_{93(2)}$.71073 honoclinic ${}_{21/c}$ 2.4821(2) 2.4363(2) 6.2496(2) 04.0791(8) 446.67(6) 282 0.767 124 .22 × 0.15 × 0.12 .68 to 27.51 16 $\leq h \leq 16$
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{cale} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ range for data collection (deg) limiting indices	$\begin{array}{c} \mathrm{C}_{20}\mathrm{H}_9\mathrm{NO}_9\mathrm{Os}_3\\ 977.90\\ 150(2)\\ 0.71069\\ \mathrm{monoclinic}\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ \mathrm{to}\ 25.06\\ -10\leq h\leq 17\\ -8\leq k\leq 10\\ \end{array}$.15 C 15 29 0. m P 15 10 10 24 4 3. 20 15 0. 1. 15 0. 1. 15 0. 1. 15 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	${}_{21}H_7NO_{11}Os_4$ ${}_{210.07}$ ${}_{93(2)}$ ${}_{71073}$ ${}_{1000clinic}$ ${}_{2_1/c}$ ${}_{2.4821(2)}$ ${}_{2.4363(2)}$ ${}_{6.2496(2)}$ ${}_{04.0791(8)}$ ${}_{446.67(6)}$ ${}_{282}$ ${}_{0.767}$ ${}_{124}$ ${}_{22} \times 0.15 \times 0.12$ ${}_{68}$ to ${}_{27.51}$ ${}_{16} \le h \le 16$ ${}_{16} \le k \le 16$
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{cale} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ range for data collection (deg) limiting indices	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 1748\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\leq h\leq 17\\ -8\leq k\leq 10\\ -18\leq 1\leq 18\\ \end{array}$.15 C 15 29 0. 16 17 16 10 24 4 3. 20 15 0. 1. 15 0. 1. 15	$\begin{array}{l} {}_{21}\mathrm{H}_{7}\mathrm{NO}_{11}\mathrm{Os}_{4} \\ {}_{210.07} \\ {}_{93(2)} \\ {}_{.71073} \\ {}_{1000clinic} \\ {}_{21/c} \\ {}_{2.4821(2)} \\ {}_{2.4363(2)} \\ {}_{6.2496(2)} \\ {}_{04.0791(8)} \\ {}_{446.67(6)} \\ {}_{282} \\ {}_{0.767} \\ {}_{124} \\ {}_{.22} \times 0.15 \times 0.12 \\ {}_{.68} \mathrm{to} \ 27.51 \\ {}_{16} \leq h \leq 16 \\ {}_{16} \leq k \leq 16 \\ {}_{21} \leq 1 \leq 21 \end{array}$
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) β (deg) γ (deg) γ (deg) β (deg) γ (de	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 1748\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\leq h\leq 17\\ -8\leq k\leq 10\\ -18\leq 1\leq 18\\ 8001\\ 2077\ ID = 0.02\\ \end{array}$.15 C 15 29 0. 16 17 16 10 24 4 3. 20 15 0. 1. 5. 5. 5.	$_{21}H_7NO_{11}Os_4$ $_{210,07}$ $_{93(2)}$ $_{71073}$ $_{1000clinic}$ $_{21/c}$ $_{2.4821(2)}$ $_{2.4363(2)}$ $_{6.2496(2)}$ $_{04.0791(8)}$ $_{446.67(6)}$ $_{282}$ $_{0.767}$ $_{124}$ $_{22} \times 0.15 \times 0.12$ $_{68}$ to $_{27.51}$ $_{16} \leq h \leq 16$ $_{16} \leq k \leq 16$ $_{21} \leq 1 \leq 21$ $_{4059}$ $_{202}VD$ $_{202}VD$ $_{202}VD$
empirical formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density _{cale} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ range for data collection (deg) limiting indices	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\le h\le 17\\ -8\le k\le 10\\ -18\le 1\le 18\\ 8001\\ 3355\ [R_{\rm int}=0.0\\ 6.11\ matrix large 1$	$\begin{array}{c} & C \\ 1 \\ 2 \\ 2 \\ 0 \\ 0 \\ m \\ P \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$_{21}H_7NO_{11}Os_4$ $_{210,07}$ $_{93(2)}$ $_{71073}$ $_{1000clinic}$ $_{2_1/c}$ $_{2.4821(2)}$ $_{2.4363(2)}$ $_{6.2496(2)}$ $_{04.0791(8)}$ $_{446.67(6)}$ $_{282}$ $_{0.767}$ $_{124}$ $_{22} \times 0.15 \times 0.12$ $_{68}$ to $_{27.51}$ $_{16} \le h \le 16$ $_{16} \le k \le 16$ $_{21} \le 1 \le 21$ $_{4}$ 059 $_{626} [R_{int} = 0.0914]$ $_{11} = 0.0914]$ $_{11} = 0.0914$
find the formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) β (deg) β (deg) γ (deg) γ (deg) β (deg) β (deg) γ (deg) β (deg) β (deg) γ (deg) β (deg	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\le h\le 17\\ -8\le k\le 10\\ -18\le 1\le 18\\ 8001\\ 3355\ [R_{int}=0.0\\ full-matrix\ leas\\ 3255/48/290\\ \end{array}$	[15] [1684] [1684] [1684] [1684] [1684] [1686] [1	$_{21}H_7NO_{11}Os_4$ $_{210,07}$ $_{93(2)}$ $_{71073}$ $_{1000clinic}$ $_{2_1/c}$ $_{2.4821(2)}$ $_{2.4363(2)}$ $_{6.2496(2)}$ $_{04.0791(8)}$ $_{446.67(6)}$ $_{282}$ $_{0.767}$ $_{124}$ $_{22} \times 0.15 \times 0.12$ $_{68}$ to $_{27.51}$ $_{16} \le h \le 16$ $_{21} \le 1 \le 21$ $_{4}$ 059 $_{626}[R_{int} = 0.0914]$ $_{11}$ matrix least-squares on F^2 $_{626/0/334}$
final formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\le h\le 17\\ -8\le k\le 10\\ -18\le 1\le 18\\ 8001\\ 3355\ [R_{int}=0.0\\ full-matrix\ leas\\ 3355/48/299\\ 0.962\\ \end{array}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{l} {}_{21}\mathrm{H}_{7}\mathrm{NO}_{11}\mathrm{Os}_{4}\\ {}_{210,07}\\ {}_{93(2)}\\ {}_{,71073}\\ {}_{1000clinic}\\ {}_{2_{1}/c}\\ {}_{2.4821(2)}\\ {}_{2.4363(2)}\\ {}_{6.2496(2)}\\ {}_{04.0791(8)}\\ {}_{446.67(6)}\\ {}_{282}\\ {}_{0.767}\\ {}_{124}\\ {}_{.22}\times 0.15\times 0.12\\ {}_{.68}\ {}_{0.767}\\ {}_{124}\\ {}_{.22}\times 0.15\times 0.12\\ {}_{.68}\ {}_{0.751}\\ {}_{16}\ {}_{6}\ {}_{k}\ {}_{\leq 16}\\ {}_{21}\ {}_{\leq 1}\ {}_{\leq 21}\\ {}_{4}\ {}_{059}\\ {}_{626}(P_{int}=0.0914]\\ {}_{11}\mathrm{lmatrix}\ \mathrm{least-squares}\ \mathrm{on}\ {}_{F^{2}}\\ {}_{626/0/334}\\ {}_{.116}\\ {}_{6}\end{array}$
final formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\le h\le 17\\ -8\le k\le 10\\ -18\le 1\le 18\\ 8001\\ 3355\ [R_{int}=0.0\\ full-matrix\ leas\\ 3355/48/299\\ 0.962\\ R_1=0.0332,\ wHere a large a start set of the set $	$\begin{array}{c} & & & C \\ & & & & 1 \\ & & & 2 \\ & & & 2 \\ 0 \\ & & & & \\ P \\ & & & P \\$	$\begin{array}{l} {}_{21}\mathrm{H}_{7}\mathrm{NO}_{11}\mathrm{Os}_{4}\\ {}_{210.07}\\ {}_{93(2)}\\ {}_{.71073}\\ {}_{1000clinic}\\ {}_{2_{1}/c}\\ {}_{2.4821(2)}\\ {}_{2.4363(2)}\\ {}_{6.2496(2)}\\ {}_{04.0791(8)}\\ {}_{446.67(6)}\\ {}_{282}\\ {}_{0.767}\\ {}_{124}\\ {}_{.22}\times 0.15\times 0.12\\ {}_{.68}\ {}_{0.767}\\ {}_{124}\\ {}_{.22}\times 0.15\times 0.12\\ {}_{.68}\ {}_{0.751}\\ {}_{16}\ {}_{6}\ {}_{8}\ {}_{\leq}\ 16\\ {}_{21}\ {}_{\leq}\ 1\ {}_{\leq}\ 21\\ {}_{4}\ {}_{059}\\ {}_{626}(P_{int}=0.0914]\\ {}_{11}\mathrm{lmatrix}\ \mathrm{least-squares\ on\ }F^{2}\\ {}_{626/0/334}\\ {}_{.116}\\ {}_{1}\ {}_{=}\ 0.0312, wR_{2}\ {}_{2}\ {}_{0.0729}\\ {}_{11}$
final formula fw temperature (K) wavelength Å cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) volume (Å ³) Z density _{calc} (mg/m ³) abs coefficient (cm ⁻¹) F(000) cryst size (mm) θ range for data collection (deg) limiting indices no. of reflns collected no. of indep reflns refinement method no. of data/restraints/para goodness-of-fit on F^2 final R indices ($I \ge 2\sigma(I)$] R indices (all data)	$\begin{array}{c} C_{20}H_9NO_9Os_3\\ 977.90\\ 150(2)\\ 0.71069\\ monoclinic\\ P2_1/n\\ 15.731(4)\\ 8.900(2)\\ 16.263(3)\\ 100.16(2)\\ 2241.2(9)\\ 4\\ 2.901\\ 17.017\\ 17.48\\ 0.25\times0.22\times0\\ 1.98\ to\ 25.06\\ -10\leq h\leq 17\\ -8\leq k\leq 10\\ -18\leq I\leq 18\\ 8001\\ 3355\ [R_{int}=0.0\\ full-matrix\ leas\\ 3355/48/299\\ 0.962\\ R_1=0.0332,\ wH\\ R_1=0.0446,\ wH\end{array}$	$\begin{array}{c} & & & & & \\ & & & \\ & & & & \\ &$	$\begin{array}{l} {}_{21}\mathrm{H}_{7}\mathrm{NO}_{11}\mathrm{Os}_{4} \\ {}_{210.07} \\ {}_{93(2)} \\ {}_{.71073} \\ {}_{1000clinic} \\ {}_{2_{1}/c} \\ {}_{2.4821(2)} \\ {}_{2.4363(2)} \\ {}_{6.2496(2)} \\ {}_{04.0791(8)} \\ {}_{446.67(6)} \\ {}_{282} \\ {}_{0.767} \\ {}_{124} \\ {}_{22} \times 0.15 \times 0.12 \\ {}_{.68} \ to 27.51 \\ \\ 16 \leq h \leq 16 \\ {}_{21} \leq I \leq 21 \\ {}_{4} \ 0.59 \\ {}_{626} \left[R_{\mathrm{int}} = 0.0914 \right] \\ {}_{11\mathrm{matrix}} \ \mathrm{least-squares} \ \mathrm{on} \ F^{2} \\ {}_{626/0/334} \\ {}_{.116} \\ {}_{1} = 0.0312, \ wR_{2} = 0.0729 \\ {}_{1} = 0.0462, \ wR_{2} = 0.082 \\ \end{array}$

R = H, 18%), in addition to a trace amount of the parent compounds **6** and **7**, respectively (Scheme 6).

The structural assignments of **15** and **16** have been made on the basis of spectroscopic analysis (IR, NMR, and mass) and by comparing the spectroscopic data with those reported for $(\mu$ -H)₃Os₃(CO)₈ $(\mu$ ₃- η ²-CC₇H₃(Me)NS), whose structure has been determined by single-crystal X-ray diffraction study.²¹ The carbonyl stretching frequencies of **15** and **16** are very similar to those of $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3-\eta^2$ -CHC₇H₃(Me)NS), indicating that they have similar structures.²¹ The aromatic region of the ¹H NMR spectrum of **15** shows three doublets at δ

Table 2. Selected Bond Distances (Å) and Angles(deg) for 10

	Bond Di	stances	
Os(1) - Os(2)	2.7919(4)	C(11)-C(12)	1.362(8)
Os(2) - Os(3)	2.9913(4)	C(12)-C(13)	1.442(7)
Os(1) - Os(3)	2.8323(4)	C(12)-C(20)	1.515(7)
Os(3)-C(19)	2.151(4)	C(13) - C(14)	1.418(7)
Os(1)-C(19)	2.159(4)	C(13)-C(18)	1.428(6)
C(14) - C(15)	1.354(7)	C(18)-N(1)	1.397(6)
C(15) - C(16)	1.393(7)	Os(2) - N(1)	2.203(4)
C(16) - C(17)	1.392(6)	C(10)-C(11)	1.397(7)
C(17) - C(18)	1.438(6)	C(10)-N(1)	1.337(6)
C(17) - C(19)	1.495(6)	C(10) - C(11)	1.397(7)
	D. 1 4		
	Bond A	ingles	
Os(2) - Os(1) - Os(3)	64.258(8)	C(19) - Os(1) - Os(3)	48.80(11)
Os(1) - Os(2) - Os(3)	58.526(11)	C(19) - Os(3) - Os(1)	49.03(12)
Os(1) - Os(3) - Os(2)	57.216(7)	N(1) - Os(2) - Os(1)	88.72(10)
C(19) - Os(1) - Os(2)	81.06(12)	Os(1) - C(19) - Os(3)	82.17(15)
Os(3) - Os(2) - C(6)	115.38(16)	Os(3) - Os(1) - C(2)	119.61(15)
Os(2) - Os(3) - C(9)	110.18(14)	Os(1) - Os(3) - C(7)	95.39(14)

Table 3. Selected Bond Distances (Å) and Angles(deg) for 12

	(8/					
Bond Distances						
Os(1) - Os(2)	2.9959(7)	C(12)-C(17)	1.449(7)			
Os(2) - Os(3)	2.8070(7)	C(13)-C(14)	1.359(8)			
Os(1) - Os(3)	2.8283(7)	C(13)-C(18)	1.515(7)			
Os(1) - C(19)	2.158(5)	C(14) - C(15)	1.401(7)			
Os(3) - C(19)	2.151(5)	C(15) - C(16)	1.401(7)			
Os(2) - N(1)	2.191(4)	C(16)-C(17)	1.438(7)			
C(10) - C(11)	1.392(8)	C(16)-C(19)	1.489(6)			
C(11) - N(2)	1.291(8)	C(17)-N(1)	1.394(6)			
C(12) - N(2)	1.359(7)	C(12)-C(13)	1.425(7)			
C(10) - N(1)	1.331(7)					
	Rond A	nglag				
$O_{\alpha}(\theta) = O_{\alpha}(\theta) = O_{\alpha}(1)$		O(1) O(1) O(2)	04 41(17)			
$U_{s(3)} - U_{s(2)} - U_{s(1)}$	58.230(18)	C(1) = Os(1) = Os(3)	94.41(17)			
Os(2) - Os(3) - Os(1)	64.229(12)	C(8) - Os(3) - Os(1)	120.10(17)			
Os(3) - Os(1) - Os(2)	57.541(12)	C(3) - Os(1) - Os(2)	111.23(19)			
C(5) - Os(2) - Os(1)	114.02(19)	C(19) - Os(3) - Os(1)	49.09(13)			
N(1) - Os(2) - Os(3)	89.56(11)	C(19) - Os(1) - Os(3)	44.88(13)			
		Os(3) - C(19) - Os(1)	82.03(17)			

8.96, 7.82, and 7.08, a triplet at δ 7.52, and a doublet of doublets at δ 7.25, each integrating for one hydrogen atom, while **16** gives two doublets of doublets at δ 7.12 and 8.14, a multiplet at δ 7.48, a triplet at δ 7.30, and a doublet at δ 9.12 in a relative intensity of 1:1:2:1:1. The high-field triplets at δ -17.11, -18.08, and -18.81

Figure 3. ORTEP drawing of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -CHC₈H₅N₂), **13** (molecule A). Thermal ellipsoids are drawn at the 35% probability level.

Table 4. Selected Bond Distances (Å) and Angles(deg) for 13

	(8 / 8 / 1			
Bond Distances				
	molecule 1	molecule 2		
Os(1) - Os(2)	2.7986(7)	2.9981(7)		
Os(2) - Os(3)	3.0059(7)	2.8013(7)		
Os(1) - Os(3)	2.8366(7)	2.8365(7)		
Os(2) - N(1)	2.189(11)	2.214(10)		
Os(1) - C(10)	2.146(12)	2.176(12)		
Os(3) - C(10)	2.179(11)	2.152(12)		
N(1)-C(17)	1.357(17)	1.321(17)		
N(2)-C(16)	1.32(2)	1.30(3)		
N(1)-C(18)	1.390(17)	1.392(16)		
N(2)-C(15)	1.352(17)	1.33(2)		
C(10) - C(11)	1.498(17)	1.502(16)		
C(11)-C(18)	1.422(19)	1.421(18)		
C(13) - C(14)	1.34(2)	1.31(3)		
C(15) - C(18)	1.456(18)	1.444(17)		
C(11) - C(12)	1.404(18)	1.360(18)		
C(12) - C(13)	1.41(2)	1.39(2)		
C(14) - C(15)	1.42(2)	1.42(3)		
C(16)-C(17)	1.34(2)	1.38(2)		
	Bond Angles			
	molecule 1	molecule 2		
Os(1) - Os(2) - Os(3)	58.378(17)	58.446(17)		
Os(2) - Os(1) - Os(3)	64.468(18)	57.306(17)		
Os(1) - Os(3) - Os(2)	57.153(17)	64.248(18)		
C(3) - Os(1) - Os(2)	93.6(5)	108.9(4)		
C(2) - Os(1) - Os(2)	92.5(4)	96.3(5)		
C(2) - Os(1) - Os(3)	120.3(4)	122.0(5)		
N(1) - Os(2) - Os(1)	88.3(3)	97.5(3)		
Os(1) - C(10) - Os(3)	82.0(4)	81.9(4)		
C(1) - Os(1) - Os(2)	168.3(5)	154.1(4)		
C(10) - Os(1) - Os(2)	82.6(3)	77.6(3)		
C(1) - Os(1) - Os(3)	103.9(5)	97.0(4)		
C(10) - Os(1) - Os(3)	49.5(3)	48.7(3)		
C(5) - Os(2) - N(1)	88.8(5)	90.4(5)		

Scheme 5

172.9(5)

48.5(3)

77.2(4)

144.4(5)

49.3(3)

82.6(3)

C(6) - Os(2) - Os(1)

C(10) - Os(3) - Os(1)

C(10) - Os(3) - Os(2)

(J = 2.2 Hz) for **15** and δ -16.98, -18.10, and -18.65 (J = 2.0 Hz) for **16**, each integrating for one hydrogen atom, are consistent with the presence of three nonequivalent bridging hydride ligands. All the spectroscopic features of **15** and **16** are very similar to those of (μ -H)₃Os₃(CO)₈(μ_3 - η^2 -CHC₇H₃(Me)NS).²¹ The mass spectra contain molecular ion peaks at m/z 951 for **15** and 937 for **16**. The formation of compounds **15** and **16** from **10** and **11** involves activation of the methylidene C–H bond followed by loss of one carbonyl ligand.

Compounds 17 and 18 have been characterized by elemental analysis, infrared, ¹H NMR, and mass spectroscopic data together with a single-crystal X-ray structure analysis for 17. The molecular structure of 17 is depicted in Figure 4, crystal data are given in Table 1, and selected bond distances and angles are summarized in Table 5. The structure is based upon a triangular array of osmium atoms in which the

Table 5.Selected Bond Distances (Å) and Angles
(deg) for 17

Bond Distances						
Os(1)-Os(2)	2.9077(9)	C(15) - C(19)	1.431(18)			
Os(2) - Os(3)	2.8484(11)	C(16)-C(20)	1.505(18)			
Os(1) - Os(3)	2.8230(10)	C(10) - C(11)	1.462(18)			
Os(1) - C(10)	2.004(13)	C(11) - C(19)	1.44(2)			
Os(2) - C(10)	2.038(13)	C(13) - C(14)	1.38(2)			
Os(3)-C(10)	2.222(13)	C(15) - C(16)	1.399(19)			
Os(3) - N(1)	2.199(10)	C(16) - C(17)	1.308(18)			
C(11) - C(12)	1.357(17)	C(17) - C(18)	1.411(19)			
C(12) - C(13)	1.407(18)	N(1)-C(19)	1.363(16)			
C(14) - C(15)	1.452(18)	N(1)-C(18)	1.280(18)			
	Bond A	ngles				
Os(3)-Os(1)-Os(2) 59.59(2)	$\breve{C}(10) - Os(1) - Os(1)$	3) 51.5(4)			
Os(3) - Os(2) - Os(2)	1) 58.72(2)	C(10)-Os(3)-Os(2) 45.3(3)			
Os(1)-Os(3)-Os(2) 61.68(3)	Os(1) - C(10) - Os(0)	2) 92.0(5)			
C(10)-Os(2)-Os(1) 43.5(4)	Os(1) - C(10) - Os(10) - Os(3) 83.6(5)			
C(10)-Os(3)-Os(1) 44.9(3)	Os(2) - C(10) - Os(2)	3) 83.8(5)			
C(1) - Os(1) - Os(2)) 117.6(4)	C(4) - Os(2) - Os(1)) 117.9(4)			

hydride-bridged Os(1)-Os(2) distance of 2.9077(9) Å is significantly longer than the other two Os-Os edges

Figure 4. ORTEP drawing of $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -C(C₉H₅)-(4-CH₃)N), **17**. Thermal ellipsoids are drawn at the 50% probability level.

Figure 5. ORTEP drawing of $(\mu$ -H)Os₄(CO)₁₁ $(\mu_3$ - η^2 -C(C₉H₆)N), **20**. Thermal ellipsoids are drawn at the 35% probability level.

(Os(1)-Os(3) = 2.8230(10) and Os(2)-Os(3) = 2.8484-(11) Å). The bridging hydride in 17 was not located crystallography but geometrically assigned to bridge the Os(1)-Os(2) edge according to the lengthening of the metal-metal vector. The most interesting feature of the structure of 17 is that the bridging heterocyclic ligand lies over the triosmium plane as reported for $(\mu$ -H)Os₃- $(CO)_{10}(\mu_3-CR)$ (R = H, Ph, CH₂CHMe₂).²⁸⁻³⁰ In the complex $(\mu$ -H)Os₃(CO)₁₀ $(\mu_3$ -CH) the CH ligand is closer to μ_3 and with the three Os-C distances being 2.35(1), 2.01(1), and 2.00(1) Å. In 17 the corresponding osmiumcarbon distances are 2.222(13), 2.004(13), and 2.039(13) Å. These distances are indicative of some direct interaction between Os(3) and C(10), and hence this bonding mode may be termed as "semi-triply" bridging. Two additional electrons are donated by the N atom of the heterobicyclic ligand to Os(3) (Os(3)-N(1) = 2.199(10)) Å), indicating a significant and direct bonding interaction between these two atoms. The spectroscopic data of 17 are consistent with its crystal structure. The close similarities of the IR and ¹H NMR spectra of 17 and 18 indicate that they have analogous structures.

The change in metal nuclearity associated with the formation of 19 and 20 indicates that cluster fragmentation and reaggregation processes are occurring. Crystals of 19 suitable for X-ray diffraction analysis could not be obtained, but suitable crystals of 20 have been obtained. The molecular structure of 20 is depicted in Figure 5, crystal data are given in Table 1, and selected bond lengths and angles are given in Table 6. The metal framework of 20 consists of a distorted Os4 tetrahedron with Os–Os distances of Os(1)-Os(2) =2.8199(4), Os(1)-Os(3) = 2.8148(4), Os(1)-Os(4) =2.9011(4), Os(2)-Os(4) = 2.8549(4), Os(2)-Os(3) =2.8435(4), and Os(3)-Os(4) = 2.8616(4) Å. The long Os(1)-Os(4) bond of 2.9011(4) Å is believed to contain the bridging hydride ligand which resonates at δ -21.50 but was not located crystallographically. This is sup-

⁽²⁸⁾ Shapley, J. R.; Uchiyama, M. E. C.; George, G. M. St.; Churchill, M. R.; Bueno, C. J. Am. Chem. Soc. **1983**, 105, 140.

⁽²⁹⁾ Yeh, W.-Y.; Shapley, J. R.; Li, Y.; Churchill, M. R. Organometallics 1985, 4, 767.

⁽³⁰⁾ Green, M.; Orpen, A. G.; Schaverien, J. C. J. Chem. Soc., Chem Commun. 1984, 37.1

Table 6. Selected Bond Distances (Å) and Angles(deg) for 20

	. 8					
Bond Distances						
Os(1) - Os(2)	2.8199(4)	C(18) - C(19)	1.363(14)			
Os(2) - Os(3)	2.8435(4)	C(13) - C(14)	1.373(10)			
Os(3) - Os(4)	2.8616(4)	C(14) - C(15)	1.432(11)			
Os(2) - Os(4)	2.8549(4)	C(16)-C(17)	1.398(12)			
Os(1) - Os(3)	2.8148(4)	C(17) - C(21)	1.417(11)			
Os(1) - Os(4)	2.9011(4)	C(19)-C(20)	1.386(12)			
Os(4) - N(1)	2.140(6)	N(1)-C(20)	1.341(10)			
C(12)-C(13)	1.468(10)	N(1)-C(21)	1.375(10)			
C(13) - C(21)	1.410(10)	C(13)-C(21)	1.410(10)			
C(15) - C(16)	1.333(13)	C(15) - C(16)	1.333(13)			
C(17)-C(18)	1.408(12)	C(17)-C(18)	1.408(12)			
	D 14	1				
	Bond A	ngles				
Os(2) - Os(1) - Os(4)	59.851(9)	C(12) - Os(2) - Os(3)	45.43(18)			
Os(1) - Os(2) - Os(4)	61.486(9)	C(12) - Os(2) - Os(4)	46.70(19)			
Os(1) - Os(3) - Os(2)	59.782(10)	C(12) - Os(3) - Os(1)	92.9(2)			
Os(2) - Os(3) - Os(4)	60.054(9)	C(12) - Os(3) - Os(2)	46.54(19)			
Os(3) - Os(1) - Os(2)	60.614(10)	C(12) - Os(3) - Os(4)	46.62(19)			
Os(3) - Os(1) - Os(4)	60.063(10)	C(12) - Os(2) - Os(4)	46.7(2)			
Os(1) - Os(2) - Os(3)	59.604(10)	C(12) - Os(4) - Os(2)	46.25(19)			
Os(3) - Os(2) - Os(4)	60.288(9)	C(12) - Os(4) - Os(3)	45.07(18)			
Os(1) - Os(3) - Os(4)	61.464(10)	Os(3) - C(12) - Os(2)	88.0(3)			
Os(2) - Os(4) - Os(1)	58.663(10)	Os(3)-C(12)-Os(4)	88.3(3)			
Os(2) - Os(4) - Os(3)	59.658(9)	Os(2)-C(12)-Os(4)	87.0(3)			
Os(3) - Os(4) - Os(1)	58.473(10)	C(12) - Os(4) - N(1)	76.6(2)			
C(12) - Os(2) - Os(1)	91.95(19)					

ported by the CO ligand displacements observed around these coordination sites. The bridging tertiary carbon C(12) donates three electrons to the metal core through similar metal-carbon σ -bonds to Os(2), Os(3), and Os(4) (C(12)-Os(2) = 2.065(7), C(12)-Os(3) = 2.027-(6), and C(12)-Os(4) = 2.081(7) Å). This is in sharp contrast to 17, and when taken together with the almost equal Os-Os bond lengths of the carbon-capped face, suggests a much more symmetrical bonding interaction resulting from capping the opposite face with the fourth osmium atom. The metal atoms Os(1), Os(2), and Os(3) each contain three linear carbonyl ligands, and the other metal atom Os(4) has only two. Two additional electrons are donated by the lone pair on nitrogen via a two-electron donor σ -bond from N(1) to Os(4). The Os(4)-N(1) bond length in **20** (2.140(6) Å) is very similar to the Os(2)–N(1) bond lengths in 6 (2.13(2) Å).^{23a} As far as electron counting is concerned, cluster 20 contains 60 cluster valence electrons (CVE) and is consistent with the six metal-metal bonds observed in the structure in accord with the effective atomic number (EAN) rule. The spectroscopic properties of 20 are consistent with the solid-state structure. The infrared and ¹H NMR spectroscopic data of 20 are very similar to those of 19, indicating that they have analogous structures.

A similar thermolysis of 10 and 11 but at 80 °C and in the presence of H_2 (1 atm) gives the trihydrides 15 and 16 in 72 and 77% yields, respectively, in addition to trace amounts of the parent clusters 6 and 7. The spectroscopic properties of 20 are consistent with the solid-state structure. The infrared and ¹H NMR spectroscopic data of 20 are very similar to those of 19, indicating that they have analogous structures.

In contrast to the thermolysis of **10** and **11**, which afforded a mixture of two trinuclear complexes and one tetranuclear complex, the thermolysis of **12** and **13** proceeds smoothly to yield $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -CC₈H₄-(5-CH₃)N₂) (**21**) and $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -C(C₈H₅N₂)) (**22**), respectively (Scheme 7). The infrared and ¹H NMR

Table 7. Reduction Potential of Compounds in
CH2Cl2 Relative to Fc/Fc+

compound	reduction in volts
10	$-2.24 (E_{\rm IRR})$
12 13	$-1.60 (E_{\rm REV})$ $-1.64 (E_{\rm REV})$
23	$-1.74 \ (E_{\rm REV})$
24	$-1.65 (E_{\text{REV}})$
20	-1.03 (EREV)

spectra and of **21** and **22** are virtually identical to those observed for **17** and **18**, indicating that they are structurally similar. The formulations of **21** and **22** are clear from their mass spectra, which show molecular ion peaks at m/z 978 for **21** and 964 for **22**.

The thermolysis of **12** and **13** in the presence of molecular hydrogen (1 atm) at 80 °C gives the trihydrides $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3-\eta^2$ -CC₈H₄(5-CH₃)N₂) (**23**) and $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3-\eta^2$ -CC₈H₅N₂) (**24**), respectively, in high yields. Both compounds have been characterized by elemental analysis, infrared, and ¹H NMR spectroscopy. The infrared spectra of **23** and **24** are very similar to those of **15** and **16** and $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3-\eta^2$ -CHC₇H₃-(Me)NS), indicating that they are isostructural.

Electrochemical studies of the methylidene insertion cluster containing the quinoxaline ligand are of interest due to the interesting electrochemical behavior observed from our previous studies of the quinoxaline ligand and quinoxaline triosmium clusters.²⁵ The quinoxaline containing a 48-electron precise cluster, $(\mu$ -H)Os₃(CO)₁₀(μ - η^2 -C₈H₅N₂), showed a one-electron reversible reduction potential at -1.63 V vs Fc/Fc⁺. This reduction potential is significantly less negative than the free ligand, and the latter is also irreversible.²⁵ Very similar electrochemical behavior is observed for the diazomethane reaction products. The electrochemical reduction potentials of the complexes are provided in Table 7. The quinoxaline-containing complexes 12, 13, 23, and 24 all show reversible one-electron reduction potentials at -1.70, -1.64, -1.74, and -1.65 V in CH₂Cl₂ vs Fc/Fc⁺, respectively, whereas the quinoline derivative ${f 10}$ shows an irreversible reduction at -2.24 V. The reversibility of the CVs for 12, 13, 23, and 24 was gauged on the

Table 8. Selected Calculated Bond Angles and Bond Lengths for 12 and 13

Bond Distances							
	1	2			1	3	
Os(1)-Os(2)	3.08	C(12)-C(17)	1.45	Os(1) - Os(2)	2.855	C(10)-C(11)	1.480
Os(2) - Os(3)	2.90	C(13) - C(14)	1.38	Os(2) - Os(3)	3.080	C(11)-C(18)	1.440
Os(1) - Os(3)	2.85	C(13) - C(18)	1.50	Os(1) - Os(3)	2.90	C(13) - C(14)	1.370
Os(1) - C(19)	2.17	C(14) - C(15)	1.40	Os(1)-C(10)	2.170	C(15) - C(18)	1.45
Os(3) - C(19)	2.18	C(15) - C(16)	1.40	Os(3)-C(10)	2.180	C(11) - C(12)	1.40
Os(2) - N(1)	2.23	C(16) - C(17)	1.43	N(1)-C(17)	1.340	C(12) - C(13)	1.40
C(10) - C(11)	1.40	C(16) - C(19)	1.48	N(2)-C(16)	1.320	C(14) - C(15)	1.41
C(11) - N(2)	1.32	C(17) - N(1)	1.39	N(1)-C(18)	1.390	C(16) - C(17)	1.40
C(12) - N(2)	1.36	C(12) - C(13)	1.42	N(2) - C(15)	1.37		
C(10)-N(1)	1.34						
			Bond	l Angles			
12	2]	13		
Os(3)-Os((2) - Os(1)	58	5.32	Os(1)–Os	s(2)-Os(3)	58	3.37
Os(2) - Os(2)	(3) - Os(1)	64	.81	Os(2) - Os(2)	s(1) - Os(3)	64	.81
Os(3) - Os(3)	(1) - Os(2)	56	5.85	Os(1) - Os(1)	s(3) - Os(2)	56	5.80
C(5) - Os(2)	2)-Os(1)	113	.67	C(3)-Os((1) - Os(2)	92	2.85
N(1)-Os(2)	2) - Os(3)	90	.46	C(2)-Os((1) - Os(2)	93	8.11
C(1) - Os(1)	Os(3)	94	94.73 $C(2)-Os(1)-Os(3)$		C(2) - Os(1) - Os(3)		0.34
C(8)-Os(3	Os(1)	120	.31	N(1)-Os	(2) - Os(1)	90).36
C(3) - Os(1)	Os(2)	110.78		Os(1) - C(10) - Os(3)		83.50	
C(19)-Os	(3) - Os(1)	48	5.17	C(1) - Os(1) - Os(2)		167.61	
C(19)-Os	(1) - Os(3)	46	5.33	C(10)-O	s(1) - Os(2)	81.29	
Os(3)-C(1	0.09) - Os(1)	83	.49	C(1)-Os((1) - Os(3)	102.88	
				C(10)-O	s(1) - Os(3)	48	3.31
				C(5)-Os((2) - N(1)	88	3.38
				C(6)-Os((2) - Os(1)	171	.53
				$C(10) - O_{2}$	s(3) - Os(1)	48	3.17

criteria that the half-wave potentials of the reductive and oxidative scans were separated by less than 80 mV at scan rates of 200 mV/s. The similar reduction potentials of the quinoxaline-containing 48-electron cluster, $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ - η ²-C₈H₅N₂) (25), 13, and 24 suggest that the binding mode of the heterocycle to the metal cluster has little effect on their reduction potentials. This is in agreement with our previously reported DFT calculations, which showed that the LUMO is predominantly ligand based for the previously studied $(\mu$ -H)Os₃(CO)₁₀ $(\mu$ - η^2 -C₈H₅N₂).²⁵ The methyl substitutent on the quinoxaline ring shifts the reduction potential about 60-90 mV toward more negative potential due to the expected electron-donating effect of the methyl group. It would appear that the cluster acts as an electron sink for the bonding electrons of the heterocycle, delocalizing them onto the core and the carbonyl ligands, and that this delocalization takes place whether the C(8) carbon of the quinoxaline ring is directly bound to the metal or connected through a methylidene or methylidyne carbon with concomitant stabilization of the LUMO. The relatively short C-C distances between C(8) and these carbons implies some conjugation with the ring in these systems (1.489 and 1.497 Å). This effect is large enough to sufficiently stabilize the radical anions of the more electron-poor heterocycle quinoxaline and makes the reductions reversible. This is not the case for the relatively more electron-rich quinolines.

Density functional theory calculations were carried out on complexes **12** and **13**. The optimized geometries gave bond lengths and angles that are in good agreement with the experimentally determined bond lengths for **12** and **13** (Tables 4, 5, and 8). Spin density calculations on the corresponding radical anions reveal that most of the spin density is distributed within the ring at the two nitrogen atoms and at positions 2, 3, and 5 of the ring (scaled to 1000 for 1e⁻, Figure 7). The net natural charge population analysis (NPA) of the C-H groups on the heterocyclic ring of 12 and 13 reveals localization of the most positive charges at the C-2 and C-3 position (Figure 7). There is also a significant amount of positive charge distributed on the carbonyl of Os(1) and particularly at the axial carbonyl of Os(2) for 12. Similar charge distribution patterns were also found for compound 13. The charge distributions at the C-2 and C-3 position are very similar. However, the spin density calculation shows that more spin density is localized at C-2 rather than at C-3 position. Another interesting feature is found at the C-5 position, which has a net charge very similar to the C-6 or C-7 positions but where significant spin density is found, suggesting particular stabilization of the resulting radical anion probably due to its para-relationship to the cluster-bound carbon atom which can delocalize bonded electrons to the cluster. Most importantly, in general the higher the positive charge at a particular position, the higher the calculated spin density at that

C(10) - Os(3) - Os(2)

75.89

Figure 6. Cyclic voltammogram of 12 and 13 at 400 mV/s vs Fc/Fc⁺.

Figure 7. Distribution of spin density and natural charge in **12** and **13**. Sum of the natural charges of C and O and C and H are shown on the CO groups and on the benzo-heterocycle, respectively.

position (Figure 7). The natural charge analysis of radicals 12 and 13 shows that the natural charges at C-2 and on the nitrogen atoms are shifted significantly toward more negative values than on any other atoms. Notably the carbonyl carbons do not show nearly the same change in net charge consistent with the idea that most of the charge due to the added electron remains in the heterocycle. The stabilities of the radicals of these complexes on the cyclic voltammetry time scale are thus mainly due to the distribution of unpaired spin density into the heterocyclic ring, and this explains the difference in behavior between guinoline and guinoxaline. The rather narrow range in measured reduction potentials observed for 12, 13, and 23-25 relative to the diversity in bonding modes of 12 and 13 versus 23, 24, and 25 is surprising and is not reflected in the NPA analyses.

Conclusions

The reaction of the quinoxaline triosmium cluster **8** with diazomethane represents a novel example of insertion of one methylene group into the Os-C σ -bond of the cluster and another to the C(5)-H bond of the

carbocyclic ring, resulting in modification of the heterocyclic ligand and affording compound **12** (Scheme 4). Thus, the now well-known attack of nucleophiles at the C(5) of quinoline in these electron-deficient clusters is paralleled by diazomethane (commonly viewed as an electrophile), but only in the case of the more electrondeficient quinoxaline system does substitution of methyl for hydrogen at the 5 position redirect the reaction toward the Os-C and Os-H bonds to give **12** and **14**. The latter provides a second interesting example of a triosmium cluster containing an edge-bridging methylene group and a σ -bound methyl group.²¹

Compounds 10 and 11, on thermolysis, produce one tetranuclear and two trinuclear complexes (Scheme 6), while 12 and 13 give only a single monohydrido triosmium compound which corresponds to only one of the three compounds obtained from 10 and 11. This may also be related to the more electron-poor quinoxaline ring system.

In summary, the reactivity of diazomethane toward unsaturated triosmium clusters containing heterocyclic ligands is markedly influenced by the structure of the ligand. To explore the effect of the structure of the diazoalkane on product formation, investigations of the reactivity of 1, 4, and 6–9 with diphenyldiazomethane, dimethyldiazomethane, and diazoacetate are currently underway in our laboratories. Finally, it is interesting to note that the binding of the electron-poor guinoxaline ring to the cluster in a variety of bonding modes gives clusters capable of one-electron reversible reduction, whereas the free ligand shows irreversible reduction at more negative potentials. It would appear that coordination of the heterocycle to the osmium core in almost any bonding arrangement is sufficient to stabilize radical anions on the cyclic voltammetry time scale relative to the free ligand. This is only true, however, for electron-precise clusters with relatively electron-poor heterocycles. The natural charge population analysis and spin density calculations also demonstrate that charge localization in the heterocyclic ring is the primary origin of the radical stabilities of compounds 12 and 13.

Experimental Section

General Procedures. Although the reaction products are air stable, all of the reactions were performed under an atmosphere of nitrogen. Reagent grade solvents were freshly distilled from appropriate drying agents. Infrared spectra were recorded on a Shimadzu FTIR 8101 spectrophotometer. NMR spectra were recorded on Varian Unity Plus 400 and Bruker DPX 400 instruments. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratories, Woodside, NY. The compounds (μ -H)Os₃(CO)₉(μ ₃- η ²-C₉H₅(4-CH₃)N) (**6**), (μ -H)Os₃(CO)₉(μ ₃- η ²-C₉H₆N) (**7**), (μ -H)Os₃(CO)₉(μ ₃- η ²-C₈H₄(5-CH₃)N₂) (**9**) were prepared according to the published procedures.^{23a,d} Diazomethane was prepared from diazald (*N*-methyl-*N*-nitroso-*p*-toluenesulfonamide) using an Aldrich mini diazald apparatus.

Reaction of $(\mu$ -H)Os₃(CO)₉ $(\mu_3 - \eta^2$ -C₉H₅)(4-CH₃)N) (6) with CH₂N₂. An ethereal solution of freshly prepared diazomethane (~0.700 g, ~16.6 mmol) was added to a dichloromethane solution (10 mL) of 3 (0.155 g, 0.160 mmol) at 0 °C, and the reaction mixture was warmed to room temperature. Immediate formation of insoluble polymethylene was observed. The reaction mixture was stirred at room temperature for 1 h, during which time the color changed from green to yellow. The

polymer was separated by filtration, and the solvent from the filtrate was removed under reduced pressure. The residue was chromatographed by TLC on silica gel. Elution with hexane/CH₂Cl₂ (5:1, v/v) gave one major band, which afforded $(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-CH(C_9H_5)(4-CH_3)N)$ (10) (0.125 g, 80%) as yellow crystals after recrystallization from hexane/CH₂Cl₂ at -20 °C. Anal. Calcd for C₂₀H₁₁NO₉Os₃: C, 24.51; H, 1.13; N, 1.43. Found: C, 24.65; H, 1.24; N, 1.45. IR (vCO, hexane): 2092s, 2066vs, 2039vs, 2005m, 1986m, 1963w, 1939w cm⁻¹. ¹H NMR (CDCl₃): δ 2.68 (s, 3H), 6.62 (d, 1H, J = 2.0 Hz), 6.99 (d, 1H, J = 5.2 Hz), 7.29 (dd, 1H, J = 7.4, 1.6 Hz), 7.66 (d, 1H, J = 7.6 Hz), 7.84 (d, 1H, J = 6.8 Hz), 9.53 (d, 1H, J = 5.2 Hz) -14.76 (d, 1H, J = 2.0 Hz) -15.16 (t, 1H, J =2.0 Hz). $^{13}C\{^{1}H\}$ NMR (CDCl₃), carbonyl region: δ 166.4 (s, 1C), 171.4 (s, 1C), 171.8 (s, 1C), 173.0 (s, 1C), 173.8(s, 1C), 174.5(s, 1C), 177.2 (s, 1C), 179.9 (s, 1C), and 184.1 (s, 1C); hydrocarbon region: δ 20.3(s, 1C), 41.0 (s, 1C), 119.9 (s, 1C), 122.3 (s, 1C), 127.5 (s, 1C), 131.0 (s, 1C), 131.8 (s, 1C), 146.2 (s, 1C), 149.7 (s, 1C), 158.4 (s, 1C), and 162.6 (s, 1C). MS: (m/z) 979 [M]⁺.

Reaction of (μ-H)Os₃(**CO**)₉(μ₃-η²-**C**₉**H**₆)**N**) (7) with CH₂**N**₂. A reaction similar to that above of an ethereal solution of freshly prepared CH₂**N**₂ (~0.700 g, ~16.6 mmol) with 7 (0.145 g, 0.150 mmol) followed by similar chromatographic workup gave one major band, which afforded (μ-H)₂Os₃(CO)₉(μ₃-η²-CH-(C₉H₆)**N**) (11) (0.125 g, 85%) as yellow crystals after recrystallization from hexane/CH₂Cl₂ at −20 °C. Anal. Calcd for C₁₉H₉NO₉Os₃: C, 23.62; H, 0.94; N, 1.45. Found: C, 23.83; H, 1.05, N, 1.54. IR (νCO, hexane): 2094m, 2067s, 2044vs, 2010vs, 1993m, 1988m, 1974w, 1968m cm^{-1.} ¹H NMR (CDCl₃): δ 6.58 (d, 1H, *J* = 2.0 Hz), 7.14 (dd, 1H, *J* = 5.2, 8.4 Hz), 7.31(t, 1H, *J* = 7.6 Hz), 8.28 (dd, 1H, *J* = 1.4, 7.0 Hz), 7.87 (d, 1H, *J* = 7.6 Hz), -14.74 (d, 1H, *J* = 2.0 Hz), −15.21 (t, 1H, *J* = 2.0 Hz). MS: (*m*/*z*) 965 [M]⁺.

Reaction of $(\mu$ -H)Os₃(CO)₉ $(\mu_3$ - η^2 -C₈H₅N₂) (8) with CH₂N₂. A treatment similar to that above of 8 (0.095 g, 0.098 mmol) with CH_2N_2 (~0.700 g, ~16.6 mmol) at 0 to 25 °C for 1.5 h followed by similar chromatographic separation gave the following compounds in order of elution. $(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-\eta_3)$ $CH(C_8H_4)(5-CH_3)N_2)$ (12) (0.019 g, 20%) as red crystals from hexane/CH₂Cl₂ at -20 °C: Anal. Calcd for C₁₉H₁₀N₂O₉Os₃: C, 23.26; H, 1.03; N, 2.86. Found: C, 23.38; H, 1.15; N, 2.92. IR (vCO, CH₂Cl₂): 2094m, 2969vs, 2042vs, 2004s, 1992m, 1967m, cm⁻¹. ¹H NMR (CD₂Cl₂): δ 9.56 (d, 1H, J = 2.8 Hz), 8.59 (d, 1H, J = 2.8 Hz), 7.87 (d, 1H, J = 7.6 Hz), 7.44 (d, 1H, J = 7.6Hz), 6.54 (d, 1H, J = 1.6 Hz), 2.58 (s, 3H), -14.69 (d, 1H, J =1.6 Hz), -15.19 (t, 1H, J = 1.6 Hz). ¹³C{¹H} NMR (CD₂Cl₂), carbonyl region: δ 171.8 (s, 1C), 171.9 (s, 1C), 173.3 (s, 1C), 173.9 (s, 1C), 174.5 (s, 1C), 177.5 (s, 1C), 180.3 (s, 1C), 182.8 (s. 1C), 183.6 (s. 1C); hydrocarbon region: δ 17.8 (s. 1C), 39.8 (s, 1C), 130.9 (s, 1C), 132.2 (s, 1C), 133.6 (s, 1C), 143.2 (s, 1C), 150.3 (s, 1C), 157.7 (s, 1C), 160.9 (s, 1C), 166.5 (s, 1C). MS: m/z 980. (μ -H)₂Os₃(CO)₈(μ_3 - η^2 -CHC₈H₅N₂), **13** (0.033 g, 35%), as red crystals after recrystallization from hexane/CH₂Cl₂-20 °C: Anal. Calcd for C₁₈H₈N₂O₉Os₃: C, 22.36; H, 0.84; N, 2.90. Found: C, 22.48; H, 0.97; N, 2.96. IR (vCO, CH₂Cl₂): 2096m, 2070vs, 2042vs, 2010s, 1992s, 1967m cm⁻¹. ¹H NMR (CD₂-Cl₂): δ 9.51(d, 1H, J = 3.2 Hz), 8.57 (d, 1H, J = 3.2 Hz), 7.95 (dd, 1H, J = 7.6, 1.2 Hz), 7.85 (dd, 1H, J = 7.6, 1.2 Hz), 7.54 (t, 1H, J = 7.6 Hz), 6.47 (d, 1H, J = 1.6 Hz), -14.70 (d, 1H, J)= 1.6 Hz), -15.24 (t, 1H, J = 1.6 Hz). MS: m/z 966.

Reaction of (μ-H)Os₃(CO)₉(μ₃-η²-C₈H₄(5-CH₃)N₂) (9) with CH₂N₂. A similar reaction of 9 (0.095 g, 0.098 mmol) with diazomethane (0.700 g, 16.6 mmol) at 0 to 25 °C followed by similar chromatographic separation afforded 12 (0.047 g, 49%) and Os₃(CO)₉(μ-η²-C₈H₄(5-CH₃)N₂)(μ-CH₂)CH₃ (14) (0.011 g, 11%) as orange crystals from hexane/CH₂Cl₂ at -5 °C. Anal. Calcd for C₂₀H₁₂N₂O₉Os₃: C, 24.14; H, 1.22; N, 2.82. Found: C, 24.48; H, 1.34; N, 2.88. IR (νCO, CH₂Cl₂): 2095m, 2068vs, 2041vs, 2009s, 1988s, 1962w cm⁻¹. ¹H NMR (CD₂Cl₂): δ 8.80 (d, 1H, J = 2.4 Hz), 8.61 (d, 1H, J = 2.4 Hz), 8.57 (d, 1H, J = 7.2 Hz), 7.50 (d, 1H, J = 7.2 Hz), 7.40 (d, 1H, J = 6.8 Hz), 6.27 (d, 1H, J = 6.8 Hz), 2.66 (s, 3H), 0.76 (s, 3H).

Thermolysis of 10. A heptane solution (20 mL) of 10 (0.100 g, 0.102 mmol) was heated to reflux for 2.5 h. The solvent was removed in vacuo and the residue subjected to TLC on silica gel. Elution with hexane/CH₂Cl₂ (5:1, v/v) gave four bands. The fast band gave $(\mu-H)_3Os_3(CO)_8(\mu_3-\eta^2-C(C_9H_5)(4 CH_3N$) (15) (0.016 g, 17%) as pale yellow crystals after recrystallization from hexane/CH₂Cl₂ at -20 °C. Anal. Calcd for $C_{19}H_{11}NO_8Os_3$: C, 23.97; H, 1.17; N, 1.47. Found: C, 23.75; H, 1.08; N, 1.28. IR (vCO, CH2Cl2): 2093m, 2074s, 2018m, 2014vs, 1987w, 1954m cm⁻¹. ¹H NMR (CDCl₃): δ 8.96 (d, 1H, J = 4.8 Hz), 7.82 (d, 1H, J = 6.6 Hz), 7.25(dd, 1H, J = 6.6, 4.8 Hz), 7.52 (t, 1H, J = 4.8 Hz), -17.11(t, 1H, J = 2.2 Hz), -18.08(t, 1H, J = 2.2 Hz), -18.81 (t, 1H, J = 2.2 Hz). MS: (m/z) 951 $[M]^+$. The second band afforded $(\mu$ -H)Os₃(CO)₉{ μ_3 - η^2 -C(C₉H₅)- $(4-CH_3)N)$ (17) (0.030 g, 30%) as orange crystals from hexane/ CH₂Cl₂ at -20 °C. Anal. Calcd for C₂₀H₉NO₉Os₃: C, 24.56; H, 0.93; N, 1.43. Found: C, 24.62; H, 1.02; N, 1.58. IR (vCO, hexane): 2085m, 2058vs, 2029vs, 2008s, 1987m, 1979w, 1962w cm⁻¹. ¹H NMR (CDCl₃): δ 2.65 (s, 3H), 7.06 (d, 1H, J = 4.8Hz), 7.43 (d, 1H, J = 6.4 Hz), 7.52 (dd, 1H, J = 7.6, 1.4 Hz), 7.79 (d, 1H, J = 6.0 Hz), 9.30 (d, 1H, J = 4.8 Hz), -16.66 (s, 1H). MS: (m/z) 977 [M]⁺. The third band gave a trace amount of an uncharacterized compound. The fourth band gave $(\mu$ -H)- $Os_4(CO)_{11}(\mu_3 - \eta^2 - C(C_9H_5)(4 - CH_3)N)$ (19) (0.019 g, 15%) as red crystals after recrystallization from hexane/CH₂Cl₂ at -20 °C. Anal. Calcd for C₂₀H₉NO₉Os₃: C, 24.56; H, 0.93; N, 1.43. Found C, 21.65; H, 0.92; N, 1.28. IR (vCO, hexane): 2085m, 2081s 2056m, 2039vs, 2025s, 1980m cm^-1. ¹H NMR (CDCl_3): δ 2.69-(s, 3H), 7.15 (d, 1H, J = 4.8 Hz), 7.81 (t, 1H, J = 7.6), 8.06 (d, J)1H, J = 7.4 Hz), 8.56 (d, 1H, J = 7.2 Hz), 9.22 (d, 1H, J = 5.2Hz), -21.46 (s, 1H). MS: (m/z) 1224 [M]⁺.

Thermolysis of 11. A heptane solution (20 mL) of 11 (0.075 g, 0.078 mmol) was heated to reflux for 2.5 h. The solvent was removed in vacuo, and the residue was subjected to TLC on silica gel. Elution with hexane/CH₂Cl₂ (5:1, v/v) gave four bands. The fast band gave $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3$ - η^2 -C(C₉H₆)N) (16) (0.011 g, 15%) as pale yellow crystals after recrystallization from hexane/CH₂Cl₂ at -20 °C. Anal. Calcd for C₁₈H₉NO₈Os₃: C, 23.05; H, 0.97; N, 1.49. Found: C, 23.27; H, 1.15; N, 1.51. IR (vCO, CH₂Cl₂): 2094m, 2074vs, 2019s, 2013vs, 2007w, 1986w, 1955m, cm⁻¹. ¹H NMR (CDCl₃): δ 7.12 (dd, 1H, J = 7.2, 1.2 Hz), 7.30 (t, 1H, J = 7.2 Hz), 7.48 (m, 2H), 8.14 (dd, 1H, J = 7.8, 1.2 Hz), 9.12 (d, 1H, J = 5.8 Hz), -16.98 (t, 1H, J = 2.0 Hz), -18.10 (t, 1H, J = 2.0 Hz), -18.65 (t, 1H, J = 2.0Hz). MS: (m/z) 937 [M]⁺. The second band afforded $(\mu$ -H)Os₃- $(CO)_9(\mu_3-\eta^2-C(C_9H_6)N)$ (18) (0.027 g, 36%) as orange crystals from hexane/CH₂Cl₂ at -20 °C. Anal. Found: C, 23.78; H, 0.89; N, 1.57. C₁₉H₇NO₉Os₃: C, 23.67; H, 0.73; N, 1.45. IR (vCO, hexane): 2085m, 2057vs, 2029vs, 2009s, 1988m, 1979w, 1963w, cm⁻¹. ¹H NMR (CDCl₃): δ 7.22 (m, 2H), 7.44 (t, 1H, J = 8.0 Hz), 7.49 (t, 1H, J = 7.6 Hz), 8.26 (dd, 1H, J = 8.4, 1.2 Hz), 9.22 (d, 1H, J = 6.4 Hz), -16.61 (s, 1H). MS (*m/z*) 963 [M]⁺. The third band was too small for complete characterization, while the fourth band gave $(\mu$ -H)Os₄(CO)₁₁ $(\mu_3-\eta^2$ -C(C₉H₆)N) (20) (0.017 g, 18%) as red crystals after recrystallization from hexane/CH2Cl2 at -20 °C. Anal. Found: C, 20.96; H; 0.69, N, 1.29. C21H7NO11Os4: C, 20.84; H, 0.58; N, 1.16. IR (vCO, CH₂Cl₂): 2080s, 2060vs, 2037m, 2022s, 1989s, cm⁻¹. ¹H NMR (CDCl₃): δ 2.69 (s, 3H), 7.15 (d, 1H, J = 4.8 Hz), 7.81 (t, 1H, J = 7.6 Hz), 8.06 (d, 1H, J = 7.4 Hz), 8.56 (d, 1H, J =7.2 Hz), 9.22 (d, 1H, J = 5.2 Hz), -21.46 (s, 1H). MS: (m/z)1210 [M]⁺.

Thermolysis of 10 in the Presence of H₂. A cyclohexane solution (50 mL) of 10 (0.105 g, 0.109 mmol) was heated to reflux under hydrogen (1 atm) for 8 h. The solvent was removed under reduced pressure and the residue chromatographed by TLC on silica gel. Elution with hexane/CH₂Cl₂ (10:

3, v/v) gave, in order of elution, 15 (0.073 g, 72%) and 6 (0.011 g, 11%).

Thermolysis of 11 in the Presence of H₂. A similar thermolysis of 11 (0.075 g, 0.078 mmol) followed by similar chromatographic separation gave 16 (0.056 g, 77%) and 7(0.008 g, 11%).

Thermolysis of 13. A heptane solution (20 mL) of 13 (0.033 g, 0.034 mmol) was heated to reflux for 2 h. The solvent was removed under reduced pressure, and the residue was chromatographed by TLC on silica gel. Elution with hexane/CH₂Cl₂ (3:2, v/v) developed two bands. The first band gave (µ-H)Os₃(CO)₉(µ₃- η^2 -C(C₈H₅N₂) (**22**) (0.012 g, 36%) as red crystals from hexane/CH2Cl2 at -20 °C. Anal. Calcd for C₁₈H₆N₂O₉Os₃: C, 22.41; H, 0.63; N, 2.90. Found: C, 22.68; H; 0.45, N, 2.96. IR (vCO, CH₂Cl₂): 2087m, 2058vs, 2031s, 2004m, 1992m, 1983w cm⁻¹. ¹H NMR (CDCl₃): δ 9.18 (d, 1H, J = 2.4 Hz), 8.76 (dd, 1H, J = 6.6, 1.4 Hz), 8.70 (dd, 1H, J =8.4, 1.4 Hz), 8.57 (d, 1H, J = 2.4 Hz), 7.48 (t, 1H, J = 6.8 Hz), -16.45 (s, 1H). MS: (m/z) 964 [M]⁺. The second band was too small for complete characterization.

Thermolysis of 12. A similar thermolysis of 12 (0.033 g, 0.034 mmol) in heptane (20 mL) for 2 h followed by similar workup gave $(\mu$ -H)Os₃(CO)₉{ μ_3 - η^2 -CC₈H₄(5-CH₃)N₂) (**21**) (0.014) g, 42%) as red crystals after recrystallization from hexane/ CH₂Cl₂ at 0 °C. Anal. Calcd for C₁₉H₁₀N₂O₉Os₃: C, 23.26; H, 1.03; N, 2.86. Found: C, 23.35; H, 1.15; N, 2.92. IR (vCO, $CH_2Cl_2)\!\!: 2085m, 2058vs, 2031vs, 2006s, 1981s\ cm^{-1}\!.\ ^1\!H$ (NMR, CD₂Cl₂): δ 9.21 (d, 1H, J = 2.4 Hz), 8.69 (d, 1H, J = 2.4 Hz), 7.62 (d, 1H, J = 7.2 Hz), 7.43 (d, 1H, J = 7.2 Hz), 2.65 (s, 3H),-16.43 (s, 1H). MS: (m/z) 978 [M]⁺.

Thermolysis of 12 in the Presence of H₂**.** A cyclohexane solution (50 mL) of 12 (0.085 g, 0.087 mmol) was refluxed under hydrogen (1 atm) for 8 h. The solvent was removed under reduced pressure and the residure chromatographed by TLC on silica gel. Elution with hexane/ CH_2Cl_2 (1:1, v/v) gave one major band, which afforded $(\mu-H)_3Os_3(CO)_8(\mu_3-\eta^2-CC_8H_4 (5\text{-}CH_3)N_2)\,(\textbf{23})\,(0.072~g,\,87\%)$ as red crystals after recrystallization from hexane/ CH_2Cl_2 at -20 °C. Anal. Calcd for C₁₈H₁₀N₂O₈Os₃: C, 22.69; H, 1.06; N, 2.94. Found: C, 22.89; H, 1.18; N, 2.98. IR (vCO, CH₂Cl₂): 2090m, 2072vs, 2017m, 2013s, 1985s, 1951m cm⁻¹. ¹H (NMR, CDCl₃): δ 9.05 (d, 1H, J = 2.4 Hz), 8.75 (d, 1H, J = 2.4 Hz), 7.77 (d, 1H, J = 7.2 Hz), 7.55 (d, 1H, J = 7.2 Hz), 2.68 (s, 3H), -16.90 (t, 1H, J = 2.0Hz), -18.02 (t, 1H, J = 2.0 Hz), -18.65 (t, 1H, J = 2.0 Hz).

Thermolysis of 13 in the Presence of H₂. A thermolysis similar to that above of 13 (0.045 g, 0.047 mmol) under hydrogen followed by similar chromatographic separation gave $(\mu$ -H)₃Os₃(CO)₈ $(\mu_3$ - η^2 -CC₈H₅N₂) (24) (0.037 g, 84%) as red crystals after recrystallization from hexane/CH₂Cl₂ at -20 °C. Anal. Calcd for C₁₇H₈N₂O₈Os₃: C, 21.75; H, 0.86; N, 2.98. Found: C, 21.98; H, 0.95; N, 3.05. IR (vCO, CH₂Cl₂): 2090m, 2073vs, 2018m, 2012s, 1984s, 1950m cm $^{-1}$. $^{1}\mathrm{H}$ (NMR, CD₂Cl₂): δ 9.06 (d, 1H, J = 2.4 Hz), 9.76 (d, 1H, J = 2.4 Hz), 7.88 (t, 1H, J = 4.4 Hz), 7.73 (d, 2H, J = 4.4 Hz), 2.66 (s, 3H),-16.93 (t, 1H, J = 2.0 Hz), -18.04 (t, 1H, J = 2.0 Hz), -18.65(t, 1H, J = 2.0 Hz).

X-ray Structure Analysis of 10 and 12. Suitable crystals of 10 and 12 were coated with Paratone N oil, suspended in a small fiber loop, and placed in a cooled nitrogen gas stream at 173 K on a Bruker D8 SMART APEX CCD sealed tube diffractometer with graphite-monochromated Mo Ka (0.71073 Å) radiation. A hemisphere of data was measured using a series of combinations of phi and omega scans with 10 s frame exposures and 0.3 frame widths. Data collection, indexing, and initial cell refinements were all carried out using SMART³¹ software. Frame integration and final cell refinements were done using SAINT³² software. The final cell parameters were determined from least-squares refinement on 3077 and 4205

reflections, respectively, for 10 and 12. The SADABS³³ program was used to carry out absorption corrections.

The structures were solved using direct methods and difference Fourier techniques (SHELXTL, V6.12).³⁴ Hydrogen atoms were placed in their expected chemical position using the HFIX command and were included in the final cycles of least squares with isotropic U_{ij} 's related to the atoms ridden on. The hydrides were positioned by using the XHYDEX program in the WinGX suite of programs.²⁶ All non-hydrogen atoms were refined anisotropically. Scattering factors and anomalous dispersion corrections are taken from International Tables for X-ray Crystallography.³⁵ Structure solution, refinement, graphics, and generation of publication materials were performed by using SHELXTL, V6.12 software. Additional details of data collection and structure refinement are given in Table 1.

X-ray Structure Analysis of 13, 17, and 20. Crystals of 13, 17, and 20 suitable for X-ray diffraction were grown by slow diffusion of hexane into a dichloromethane solution at -4 °C. Crystallographic data were collected at 120 K, using a Bruker-Nonius CCD area detector diffractometer and Mo Ka radiation ($\lambda = 0.71073$ Å). Data collection and processing were carried out using the programs $COLLECT^{36}$ and $DENZO.^{37}$ Empirical absorption corrections were applied to the data set using multiple and symmetry-related data measurements via the program SORTAV.^{38,39} The unit cell parameters were indexed from all observed reflections in a θ range of 10° and refined using the entire data set. The structures were solved by direct methods (SHELXS-97)⁴⁰ and refined on F^2 by full matrix least-squares (SHELXL-97)⁴¹ using all unique data. The bridging hydrides in 13 were located from a difference map but not refined. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in calculated positions (riding model) with $U_{\rm iso}$ set at 1.2 times the $U_{\rm eq}$ of the parent atom.

Electrochemistry. Electrochemical measurements were performed using a BAS CV-50W analyzer equipped with a standard three-electrode cell. This cell was designed to allow the tip of the reference electrode to approach closely to the working electrode. Voltammetric experiments were performed using aqueous Ag/AgCl as a reference electrode, a glossy carbon as a working electrode, and platimum wire as the auxiliary electrode. Potential data are referred to the ferrocene (0/+) couple, which is oxidized in CH_2Cl_2 at +0.48 V vs Ag/AgCl. Typically, a solution containing 1 mM of the cluster and 0.1 M supporting electrolyte (tetrabutylammonium hexaflurophosphate, Bu_4NPF_6) was prepared using freshly distilled dichloromethane. The solution was degassed prior to introducing the sample and also between runs. Positive feedback iR compensation was routinely applied.

Computational Details. DFT calculations were performed using the Gaussian 98 and 03 programs.42 The molecular structures from single-crystal X-ray structure determinations were used for geometry optimization. We used restricted Becke's three-parameter hybrid functional⁴³ and Lee-Yang-Parr's gradient-corrected correlation function (B3LYP) through-

⁽³¹⁾ SMART Version 5.628; Bruker AXS, Inc.: Madison, WI, 2003. (32) SAINT Version 6.36; Bruker AXS, Inc.: Madison, WI, 2002.

⁽³³⁾ Sheldrick, G. SADABS Version 2.10; University of Göttingen, 2003.

⁽³⁴⁾ SHELXTL V6.12; Bruker AXS, Inc.: Madison, WI, 2003.

⁽³⁵⁾ Wilson, A. J. C., Ed. International Tables for X-ray Crystallography, Volume C; Kynoch, Academic Publishers: Dordrecht, 1992; Tables 6.1.1.4 (pp 500-502) and 4.2.6.8 (pp 219-222).

⁽³⁶⁾ Hooft, R. COLLECT Data Collection Software; Nonius B.V., Delft: The Netherlands, 1998.

⁽³⁷⁾ Otwinowski, Z.; Minor, W. In Macromolecular Crystallography; Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: New York, (38) Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
(39) Blessing, R. H. J. Appl. Crystallogr. 1997, 30, 421.

⁽⁴⁰⁾ Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, 46, 467.

⁽⁴¹⁾ Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University Göttingen: Germany, 1997.

⁽⁴²⁾ Closson, W. D.; Wriede, P.; Bank, S. J. Am. Chem. Soc. 1966, 88, 1581.

Electron-Deficient Triosmium Clusters

out.⁴⁴ The basis sets employed were LanL2dz for the osmium atoms, using the relativistic effective core potential (ECP), which replaces the inner core electrons, and 6-31G for the other atoms in all the calculations. No symmetry restrictions were placed on the optimizations. Stationary points were determined by performing normal-mode analyses on the optimized structures.

Acknowledgment. We gratefully acknowledge the Royal Society of Chemistry for a research grant. E.R. thanks the Department of Energy for support.

Supporting Information Available: Text and tables giving details of the X-ray crystallographic structure determination for 10, 12, 13, 17, and 20. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0503794

⁽⁴³⁾ Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(44) Lee, C.; Yang, W.; Parr, R. G. Condens. Matter 1988, 37, 785.