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Abstract

In this paper, I first review the historical developments in eco-

nomic forecasting and then focus on the Phillips curve, one of the

most controversial and highly-debated inflation forecasting models.

In the empirical portion of the paper, I extend Robert Lucas and

Leonard Rapping’s (1969) analysis and then attempt to forecast in-

flation, much in the spirit of James Stock and Mark Watson’s (1999)

paper.



1 Introduction to Forecasting

Forecasting is a discipline focused on predicting the future. According to

Graham Elliott and Allan Timmerman (2008), forecasting’s use lies in its

ability to inform present decisions. Forecasting can be used to predict which

outcomes are most likely, either through a single point estimate or an interval

estimate, which shows a range of values for a chosen confidence level. Policy-

makers forecast inflation when trying to determine the appropriate interest

rate, financial analysts employ forecasting to select investments, and public

officials need forecasting in order to estimate the potential future returns of

a capital-intensive infrastructure project in order to assess whether it will

have a positive net present value (Graham and Timmerman 2008).

How can we produce forecasts? There are two general types of methods:

in-sample and out-of-sample forecasts. Although it may seem that we would

only need one forecasting method, in actuality, we need two. The reason

is that each method has a specific purpose. To illustrate the differences,

consider the simple model:

yt+1 = α + βyt + εt.

Suppose our data have one observation per year and cover the years from 1980

to 2000. If our objective were to explain the changes in yt over time, then in-

sample forecasting would be appropriate. An in-sample forecast will use all

of the available data when estimating parameters. While these parameters



may fit the data, the only way to tell how well these coefficients will match

data outside of the time sample will be to use out-of-sample forecasting.

However, an in-sample forecast is appropriate for historical analysis. As we

will see later on in this paper, Robert Lucas and Leonard Rapping (1969)

use in-sample forecasting in order to evaluate the influence of price and wage

changes on the unemployment rate.

The key difference between in-sample and out-of-sample forecasting is

that out-of-sample forecasting was designed to simulate the real-world fore-

casting process. For example, we will see that when Stock and Watson (1999)

try to forecast future inflation rates, they restrict themselves to data avail-

able at least one year prior to the observation they are trying to predict.

While they could use in-sample forecasts to model inflation up to that point

in time, there is no guarantee that a model excelling at in-sample predictions

will be able to accurately predict future inflation rates. In order to deter-

mine whether a given model will predict values outside of the time sample

accurately, they turn to out-of-sample forecasts.

To determine whether a model is likely to accurately predict future values,

we try to judge how well it predicted out-of-sample in the past. First we take

the data sample we wish to analyze and partition it into two disjoint pieces;

we will choose the first S observations for our regression sample, and the

remaining P observations for our prediction sample (Elliott and Timmerman

2008). For example, suppose we select the years 1980 to 1990 as our regression

sample and 1991 to 2000 as our prediction sample. We would use the first



interval to estimate the parameters α and β from our original model. Then

our prediction for the year 1991 would be

ŷ1991 = α + βy1990,

in which ŷ refers to our predicted value and y refers to our actual observation.

We could also estimate

ŷ1992 = α + βy1991.

We would continue until we had obtained a sequence of ten predictions

{ŷ1991, ŷ1992, ŷ1993, . . . , ŷ2000}

and compared each to the sequence of actual values

{y1991, y1992, y1993, . . . , y2000}.

To measure the accuracy of our predictions, we generally use the Root Mean

Square Error, or RMSE for short. This measurement is the time-series ana-

logue to the adjusted R2 value common in cross-sectional data. Thus, the

RMSE typically measures the explanatory power of our model. To calculate

the RMSE, we would compute

RMSE =

√
(ŷ1991 − y1991)2 + (ŷ1992 − y1992)2 + . . . + (ŷ2000 − y2000)2

10
. (1)



Note that the RMSE can also be used for in-sample forecasts as well. Once we

obtain the predicted values for our in-sample forecasts, we can then calculate

the RMSE corresponding to our predictions using Equation 1.

Although the process described in the preceding paragraph is likely to

produce relatively accurate out-of-sample predictions, it is possible to pro-

duce even better forecasts. Consider that when we forecasted y1992 we only

used the years 1980 to 1990 to estimate α and β even though the datum was

available for the year 1991. If we estimated α and β using the years from

1980 to 1991 under this new procedure, then we would not only have more

data but, more importantly, we would also have more recent data, both of

which would help us produce more accurate results. To produce more accu-

rate results, we would want to run a separate regression to estimate α and

β using all available data for each observation in the prediction sample. We

would continue until we exhausted all observations in the prediction sample.

Although this process is more time intensive, the increased accuracy of the

forecasts is often worth the expense.

Now suppose that we have a second model, given by

yt+1 = c + λxt.

Using the out-of-sample forecasting process and the RMSE, we could de-

termine which model is more likely to produce more accurate predictions.

While it may seem counterintuitive at first, it also possible to achieve even



more accurate predictions by combining forecasts. How would we accomplish

this? Let f1(t) and f2(t) denote our forecasted values for some variable y.

We could then combine these forecasts by regressing

yt = α0 + α1f1(t) + α2f2(t)

to estimate α0, α1, and α2.

In fact, combined forecasts are useful because they help minimize a com-

mon tradeoff in forecasting between accuracy and precision (Elliott and Tim-

merman 2008). Due to the prevalence of short-time regression samples for

parameter estimation, either because of the instability of our data series or

because of data availability issues, the degree of freedom of our regression

sample is usually restricted. Constructing a complicated model including all

of the necessary variables may lead to imprecise estimates of the coefficients.

Conversely, a simple model including only a few of the key variables is likely

to produce biased forecasts. However, a combined forecast of multiple models

is likely to be relatively precise and unbiased.

When choosing a model, there are several types to consider, three of

which are judgmental, structural, and nonstructural. A judgmental model is

one that employs human judgment to infer future behavior. For a judgmen-

tal model, the term model is deceptive. For example, a judgmental model

may have no numbers, may not be replicable, and will likely have estimates

that depend on whoever is making the judgment. It is only a model in the



sense that we produce expectations or predictions based on our observations,

which could be data, anecdotal evidence, or our intuition. An example of a

judgmental model in practice is the Beige Book provided by the Federal Re-

serve Board, which gives anecdotal evidence, obtained from interviews with

businesses, economists, and experts, of the direction of the economy in the

near future. This evidence is then interpreted by people to form predictions

about the strength of the economy in the near-term.

In practice, judgmental models are somewhat rare in economics, though

they may be highly accurate. According to Ben Bernanke (2007), Federal

Reserve predictions are often adjusted to incorporate the predicted value of

the models and the judgment of the policymakers.

The two most common models in economics, and the ones we will focus

on for the remainder of this paper, are structural and nonstructural mod-

els. Structural models rely on economic theory and assumptions about the

economy to predict the future values of the dependent variables. When re-

searchers estimate a system of equations with consumption and investment

determined by independent variables, they are employing structural models

to forecast the direction of the economy. Another example of a structural

model is the Phillips curve, which we will discuss in the next section.

In contrast, nonstructural models are highly non-theoretical and use past

data to predict future movements. For data exhibiting high serial correlation

or in which the theoretical underpinnings are not established, nonstructural

models are frequently used for prediction. One example would be to predict



inflation using only its past values. For more information about the modeling

process, see A. H. Studenmund’s Using Econometrics (2006).

Francis X. Diebold (1998) traces the growth of forecasting within eco-

nomics to the development of Keynesian theory in 1936. Using Keynes’ work

as a springboard, economists sought to model the decision rules of agents

(consumers, investors, and governmental) in the model using systems of equa-

tions. Each of these equations represented facets of the economy’s underlying

structure, and this approach became known as structural forecasting. Struc-

tural forecasting owed its development to Keynes and to economists’ growing

acceptance of his theories.

Diebold identifies the breakdown of structural forecasting with growing

dissatisfaction over the performance of its models. Some economists objected

to the absence of theoretical underpinnings of disequilibrium, while others

objected to how expectations were treated.

In fact, modeling expectations has been one of the most controversial

topics in the field of macroeconomics. At first, näıve forecasters treated eco-

nomic actors as having myopic and static expectations. Subsequent forecast-

ers, however, allowed for dynamic expectations. The structural forecasters

then modeled expectations as if they were adaptive. On the one hand, this

assumption allows for easy estimations of econometric models. On the other

hand, adaptive expectations are not very realistic.

Proponents of rational expectations faulted the use of static and adaptive

expectations, which assumed that individuals expectations were informed



only by the past or not informed at all. They argued instead that individu-

als have the capacity to anticipate future events rather than simply adapting

their expectations after the fact. Even more damaging to structural fore-

casting was Lucas’ (1976) critique, in which he stated that structural models

were inherently unstable because their parameters continually changed. He

argued that when public officials tweaked policy, economic agents adjusted

their decision making rules, thus necessitating constant estimates of param-

eters. Since policy is constantly changing, any estimates are likely to be

biased.

Further criticisms mounted from the models’ poor performance during

the 1970s with the rise of stagflation. According to Flint Brayton, Andrew

Levin, Ralph Tryon, and John C. William’s (1997) article, one of the best-

known structural models of this time period was the FRB-MIT-PENN model,

developed in 1966 by Franco Modligliani, Frank de Leeuw, and Albert Ando.

This model consisted of 60 equations but depended on the IS-LM frame-

work for demand-side analysis and the neoclassical growth models to predict

changes in aggregate supply. In spite of its lack of sophistication, Charles R.

Nelson (1972) found that a simple nonstructural model consistently outper-

formed the FRB-MIT-PENN model at forecasting in terms of out-of-sample

predictive ability.

Some work has been done to correct the deficiencies of the structural

model by implementing rational expectations and better evaluating forecast-

ing performance. According to Diebold (1998), these new models are em-



ployed by the Federal Reserve Board and the IMF, institutions which are

concerned with the effects of changes in policy. Yet, significant attention

also turned to nonstructural modeling, which provided more robust forecasts

though at the expense of the cause-and-effect information provided by the

structural models.

The development of nonstructural modeling predated the rise of Key-

nesian Economics, beginning in the 1920s with the work of Eugene Slut-

sky (1937), originally printed in 1927 in Russia, and George Yule (1927).

These two pioneers found that simple autoregressive processes, in which

the previous values of a process were used to forecast future values (e.g.,

xt = f(xt−1, xt−2, . . .)), provided good predictions for numerous time series.

They also studied moving average processes, in which the current value of a

system is modeled as a function of previous shocks (or previous error terms).

Examples of several types of nonstructural models are given in Table 1.

In 1938, Herman Wold showed that the stochastic component in a time

series can be modeled using the methods introduced by Slutsky and Yule.

Thirty-two years later, George Box and Gwilym Jenkins’ (1970) seminal work

on nonstructural time series advocated the use of Autoregressive Moving

Average (ARMA) models, which Box and Jenkins showed were equivalent

to both moving average and autoregressive models but could be represented

with fewer terms. In fact, automatic ARMA modeling can produce forecasts

that are competitive to those produced by professional forecasters (Jan G.

De Gooijer and Rob J. Hyndman 2006). Box and Jenkins also provided a



Table 1: Example Nonstructural Models
Autoregressive (AR) yt = c1yt−1 + c2yt−2 + εt

Moving Average (MA) yt = c3εt−1 + c4εt−2 + ηt

Autoregressive
Moving Average (ARMA) yt = c1yt−1 + c2yt−2 + c3εt−1 + c4εt−2 + ηt

Autoregressive Integrated
Moving Average (ARIMA) ∆yt = c2yt−2 + c4εt−2 + ηt

Exponential Smoothing yt = βyt + β(1− β)yt−1 + β(1− β)2yt−2 + . . .

Vector Autoregressive (VAR) yt = c1yt−1 + c2yt−2 + c3ut−1 + c4ut−2 + εt

System ut = c1yt−1 + c2yt−2 + c3ut−1 + c4ut−2 + εt

Here yt and ut represent two time-series with εt, or ηt when the residual εt is
being used as an independent variable, representing the classical error term.

methodology to design AR, MA, ARMA, and ARIMA models based on three

steps: identification, estimation, and verification. This approach was called

the Box-Jenkins approach while AR, MA, AMRA, and ARIMA models are

each generally referred to as a Box-Jenkins method.

Christopher A. Sims (1980) later extended the univariate framework in

Box and Jenkins work to create Vector Autoregressive (VAR) models. These

model two or more endogenous variables simultaneously using the lagged

values of all endogenous variables. An example system is given by

yt = c1yt−1 + c2yt−2 + c3ut−1 + c4ut−2 + εt



ut = c1yt−1 + c2yt−2 + c3ut−1 + c4ut−2 + εt,

in which GDP (yt) and unemployment (ut) are modeled using the lagged

values of both variables. VARs, however, generally lead to overfitting the

data because they estimate too many coefficients (Gooijer and Hyndman

2006). Moreover, in this framework, the causality is inherently muddled.

While it may produce accurate predictions, this VAR will likely provide little

information as to whether yt causes changes in ut or vice versa.

One later development in nonstructural forecasting is cointegration, as

discussed by Diebold (1998). A humorous example of the difference between

cointegration and a random walk is given by Michael P. Murray (1994). In

his example, we first imagine that a drunk woman and her dog are leaving the

bar together. If the woman were to forget her dog’s leash, then in the absence

of conscious thought, we would expect each of their paths to follow a random

walk. That is, at any time t, in order to stabilize herself, the drunk will have

to put a foot down in the direction in which she is unbalanced. Assuming the

such directions are random, we would have a random walk. Similarly for the

dog, if we assume the dog follows whatever scent comes his way, and if one

and only one new scent develops in each time period, we would expect that

the dog’s path would follow a random walk. Thus, the change in position

between two sequential time periods, denoted as xt−xt−1, may be thought of

as random white-noise (e.g. εt, a normally distributed variable with a mean

of zero).



If, however, the woman were trying to find the dog (to avoid being woken

up in the middle of the night when the dog would inevitably want to be let

in) and if the dog were trying to find the woman to ensure being fed in the

morning, then the paths are no longer necessarily random walks. That is,

unlike the first scenario, we would expect that the dog and woman would

significantly deviate from their starting positions in order to find the other.

That is the woman, whose position is denoted xt, would generally walk in

the direction of the dog, as given by

xt − xt−1 = εt,y + cx(yt−1 − xt−1)

where (yt−1 − xt−1) denotes direction, either positive or negative. Similarly,

the dog, whose position is denoted as yt, walks according to a similar model:

yt − yt−1 = εt,x + cy(xt−1 − yt−1).

In these models, ε can be thought of as a normally distributed variable with

a mean of zero and cx and cy are parameters affected by the drunkenness and

length of strides of the two beings in question. In this scenario, the random

components are still present in both the dog and woman’s paths. However, if

εt,x and εt,y exhibit identical distributions, then the distance separating the

woman and her dog xt−yt is largely deterministic. Thus, we can cointegrate

the series to minimize the randomness and to assist in predictions.

Yet, even as nonstructural models have grown in popularity, structural



models in the form of dynamic stochastic general equilibrium models, referred

to as DSGE by Diebold, have also been developed. In 1982, Kydland and

Prescott employed a DSGE to explain business cycle movements as a result

of technological shocks, giving rise to the real business cycle theory. Rather

than trying to use decision rules of consumers and investors to predict future

economic activity, DSGE models instead rely on tastes and technology. Yet

even though these models offer significant promise, they are not without

disadvantages. Often it is necessary to calibrate the models by estimating

parameters (either by previous research or “common sense”), and while these

models identify causal links, according to James Stock and Mark Watson

(2001), they generally fit the data rather poorly.

Chris Chatfield (1997) discusses some advances in non-linear forecasting

that may be promising for future research. One example is a threshold AR

model, a piecewise-defined AR model, depending on the previous state of a

system. For example, denote real GDP at time t as yt and let xt = 1 if the

economy is an a recessionary state and zero otherwise. Then to forecast real

GDP, we would need to first predict xt and then use these values to estimate

the other parameters given by the model:

y =






a0 + a1yt−1 if xt = 1

b1 + b1yt−1 in xt = 0.
.

Another advance has been the development of neural network, in which al-

gorithms attempt to tease out the relationships between exogenous and en-



dogenous variables. However, neural networks are often unpractical because

they require copious amounts of data.

So where does that leave us? Paul Newbold and Clive W. Granger (1974)

suggest the following guidelines for univariate forecasts:

• For fewer than thirty observations, exponential smoothing (forecasting

using lagged errors with exponentially decreasing weights) is generally

good.

• Between 30 and 40 observations, exponential smoothing, in combina-

tion with stepwise autoregressive, appears to be best.

• For more than 40 or 50 observations, Box-Jenkins methods will produce

good results and will also work well with intractable time series

Newbold and Granger also note that although Box-Jenkins ARMA and

ARIMA models generally outperform others, there are also associated time

and skill costs. In contrast, exponential smoothing and stepwise autoregres-

sions (using lagged changes) are almost automatic.

For multivariate data, vector autoregressive models are often good. Sims

(1980) argues that structural models are flawed because of unknown correct

functional specifications, unrealistic assumptions and the faulty treatment

of expectations. In comparison, he believes that since vector autoregressive

models relax the need for proper identification, they will consequently lead

to better forecasting. Stephen Hall (1995) responds that without identifying

shocks in the system and without any use of the theory enjoyed by structural



models, VARs yield poor estimates. He argues VARs should only be used

to help choose the parameters in structural models. Moreover, he states

that with advancements in cointegration, in the treatment of expectations,

and greater focus on long-term system behavior, these approaches are slowly

converging to a singular methodology. Stock and Watson (2001) similarly

argue that the value of VARs lies in their ability to fit the data and provide

reasonable estimates for the magnitude of causal effects when constructed in

accordance with economic theory. However, they are less useful for policy

analysis and for distinguishing correlation and causation, which some authors

refer to as the identification problem.

Granger (1996) offers forecasters some practical advice. First, he urges

forecasters to provide better information about uncertainty, and rather than

providing 95 percent confidence intervals for their forecasts–which are too

wide for practical use–he urges the use of 50 percent confidence intervals.

In addition, given that specification is a major issue in macroeconomics, he

thinks that heteroskedasticity deserves greater attention from forecasters,

since specification error may lead to heteroskedasticity and biased estimates

of confidence intervals. Furthermore, when trying to forecast further into the

future, he advises practitioners to pay attention to the relative strength of

the signal compared to the noise. If the signal is relatively weak, long-term

forecasts are likely to be inaccurate. Models that only use historical data

(or previous data) will only be accurate “to the extent that history repeats

itself.”



In systems with structural breaks, evidenced by when forecasts are consis-

tently off target, he advocates the use of leading indicators. Remember that

in a typical VAR, we might use lagged values of ut and yt to try to predict

one time period ahead. In contrast, a leading indicator could be correlated

with a value of ut or yt that is four or more time periods ahead. Further, in

data where errors are primarily associated with outliers, he advises forecast-

ers to expend more effort predicting the unexplained breaks in a time series

a priori. One such approach is the Markov-Switching model, also called the

regime-switching model. These models are very similar to threshold autore-

gressives; the only difference is that autoregressives imply that a model only

includes lagged values of a variable, whereas regime-switching models may be

multivariate. James D. Hamilton (1989) uses the regime-switching model to

explain the variation in economic growth by first forecasting the probability

of a recession. In his model, a recession naturally coincides with a low-growth

state and an expansion with a rate of higher growth.

2 Forecasting Inflation

The Phillips curve, in its original form, summarizes an inverse empirical re-

lationship between wage inflation and the unemployment rate. A. William

Phillips’ widely cited article of 1958 studied wage and unemployment move-

ments in the United Kingdom from 1861 to 1957. Phillips first conceived of

inflation in terms of rising wages. He reasoned that changes in money wage



rates were sensitive to shortages and surpluses in labor. In fact, he states that

“when the demand for labour is high and there are very few unemployed we

should expect employers to bid up wages quite rapidly.” Thus, when the un-

employment rate was low, the low levels of available workers caused wages to

increase. These wage increases then caused increases in price level. Phillips

suggested that policymakers could use this relationship to choose a desired

combination of wage inflation and unemployment.

Phillips was not the first to notice a relationship between inflation and

unemployment. In a reprint of his 1926 article, Irving Fisher (1973) finds

a 90 percent correlation between inflation and unemployment. However, in-

stead of modeling inflation as a function of unemployment, Fisher models

unemployment as a function of inflation. Rather than arguing that low un-

employment rates drive wage increases, he reasons that price changes, espe-

cially unanticipated price changes, would cause the real wage to fall and the

quantity of labor demanded to rise. With a higher level of greater demanded,

the unemployment rate would be reduced. At the conclusion of the paper,

he notes that the true relationship is likely more complex than the one he

hypothesized, and he posits that a stabilization of price levels is consistent

with a stabilized level of unemployment.

It was not until Phillips’ (1958) ground-breaking study, however, that the

tradeoff between unemployment and inflation was duly noticed by the eco-

nomics profession. Within ten years after Phillips’ publication, the Federal

Reserve incorporated the Phillips curve into the FRB-MIT-PENN model, as



previously mentioned.

Paul Samuelson and Robert Solow (1960) brought the Phillips curve anal-

ysis to the United States data, though with some modifications. Like Fisher,

they used percentage changes in overall price levels instead of changes in

wage levels as Phillips did. Like Phillips, they tried to explain changes in the

inflation rate using the unemployment rate. Using these modifications, they

found evidence that the Phillips curve shifted outward following the second

World War, indicating that after the war, each rate of unemployment was

now associated with a higher level of inflation.

This instability would later be documented by other researchers (Robert

Lucas and Leonard Rapping 1969). Perhaps the most interesting finding of

Samuelson and Solow’s study was that price stability was associated with

an unemployment rate of approximately 5.5 percent. This level of unem-

ployment would later be referred to as the natural rate of unemployment,

although the level would change throughout the years reflecting changes in

the economy.

Within ten years, objections to the existence of a long-term and stable

Phillips curve mounted. One of the first objections came from Richard Lipsey

(1960). He showed that while the variation in wages could be explained by the

changes in the unemployment rate, in the rate of change of the unemployment

level, and in the rate of change of the price level over the time interval selected

by Phillips, the relationship was inherently unstable. Moreover, the relative

explanatory power of each variable shifted from 1862 to 1957. As a result,



estimates of parameters in the Phillips curve would be associated with low

confidence levels, limiting the usefulness of the Phillips curve to policymakers.

While Lipsey’s findings weakened the Phillips curve’s empirical basis,

Milton Friedman’s (1968) conjecture that unemployment was insensitive to

anticipated inflation cast doubt on its theoretical underpinnings. He ar-

gued that once workers began to anticipate inflation, they would demand

pay raises accordingly. At a higher level of pay, the quantity of workers de-

manded would fall, and unemployment would return to its initial level. The

implication is that only unanticipated inflation could reduce unemployment.

Thus, in order for policymakers to keep unemployment below its natural rate,

they would be forced to increase the inflation rate by a steady amount each

year, which would ultimately be unsustainable. Therefore, he argued that

people’s expectations preclude a long-term tradeoff between inflation and

unemployment. He stated that the role of monetary policy makers should

therefore be to keep price levels relatively stable.

Building upon Friedman’s criticism, Lucas and Rapping (1969) rejected

the claim of a stable long-term tradeoff between unemployment and inflation

using data from 1904 to 1965. While Friedman provided a theoretical argu-

ment against the notion of a stable long-term tradeoff, Lucas and Rapping’s

work provided an econometric refutation. Using newly-developed microeco-

nomic rationales to explain the Phillips curve, Edmund Phelps (1969) also

concluded that any movement in the labor market away from its natural

state would lead to rapidly accelerating inflation.



Friedman (1977) conjectured that instead of a long-term tradeoff between

unemployment and inflation, the long-run Phillips curve was likely vertical.

The implication was that any deviation in unemployment below the natural

rate of unemployment would not only bring about inflation but would also

cause it to accelerate. He postulated that instead of bargaining for nominal

wages, as assumed by previous proponents of the Phillips curve, workers

bargained for real wages. Thus, workers would demand wage increases above

and beyond the increases in price level whenever unemployment was below

its equilibrium, or natural rate.

Since then, the Phillips curve has been controversial. Finn Kydland and

Edward Prescott (1982) emphasize the importance of the notion of the clas-

sical dichotomy, which claims that nominal variables, such as inflation, and

real variables, such as unemployment, are unrelated even in the short-run.

Kydland and Prescott proposed the real business cycle model, which assumes

that business cycles depend exclusively on real variables, such as technologi-

cal shocks, with nominal variables having no impact on changes in real out-

put. Greg Mankiw (2001) counters that the classical dichotomy falls apart

in the short-term because prices are sticky, and so changes in monetary pol-

icy cause inflation and unemployment to move in opposite directions, while

Alan Blinder (1997) calls the empirical relationship described by the short-

run Phillips curve “the clean little secret of Macroeconomics.” In an attempt

to reconcile the notion of the classical dichotomy in the long-run with the

apparent existence of the Phillips curve in the short-run, Mankiw (2001)



admits that while the theoretical basis for the short-run Phillips curve has

a firm foundation in Keynesian economics, the long-run dynamics are not

well understood. He implies that the existence of a short-run Phillips curve

depends only on the existence of a short-run tradeoff between inflation and

unemployment.

In fact, Stock and Watson (1999) find that the Phillips curve and simi-

larly specified models provide the best out-of-sample forecasts for the years

1959 to 1997. In their article, they conclude that the variables measuring

current economic activity, broadly defined, produced the most reliable pre-

dictions for future inflation. The three most promising variables across both

forecasting samples considered, 1970–1983 and 1984–1997, were unemploy-

ment, the rate of capacity utilization, and a composite index of 168 activity

measures. Andrew Atkeson and Lee Ohanian (2001), however, find that for

the years 1986–2001, this relationship appears to have broken down. In their

analysis, the forecasts provided by the Phillips curve do worse than the näıve

forecast, measured as the average inflation rate for the last twelve months.

In a later paper, Stock and Watson (2005) reconcile their findings with

Atkeson and Ohanian’s. While Stock and Watson admit that forecasts from

the Phillips curve may perform worse than the näıve forecast, they note that

this is likely a result in the decreased volatility of inflation. In other words,

if deviations in inflation are small, then it is likely that a larger portion

of the variance in inflation is white noise, which, if true, would reduce the

difference in predictive powers between the best and worst models. They



argue, however, that claims of a break-down of the Phillips curve are not

necessarily true because the relationship between the real activity variables

and inflation rate is still present, even if it is weaker.

Others question the appropriateness of using the Phillips curve rela-

tionship at all. James Galbraith (1997) argues that the non-accelerating-

inflation-rate-of-unemployment (NAIRU), from which the Phillips curve is

based, has been subject to unexplained drifts over time. Using historical anal-

ysis, Robert Gordon (1997) argues that the NAIRU follows a random walk,

which, if true, suggests that the NAIRU cannot be known at any given point

in time. Consequently, Galbraith argues that policy-makers should aban-

don policies based on the Phillips curve. Thomas Laubach (2001) questions

whether this relationship is even significant. In his analysis of seven industri-

alized countries, he wonders whether his estimates for NAIRU for non-U.S.

countries are actually valid. Similarly, Robert Gordon (1997) states that the

inflation process in Europe and Japan is fundamentally different than the

Phillips curve characterizing U.S. inflation.

Even in the U.S., estimates are not easily obtained. Douglas Staiger,

James Stock, and Mark Watson find that although their estimates of the

NAIRU have moved from 4.9 in 1966 to 7.0 in 1978 and around 5.7 in 1994,

the spread of 95% confidence intervals of such estimates vary from about 1.8

to over 5.0, or as George Akerlof (2002) notes, over three times the variation

in the unemployment rate for the last fifty years. Staiger, Stock, and Watson

suggest that although some could interpret the wide confidence intervals as



an indication that the NAIRU does not exist, they believe that the intervals

are so wide because the data is noisy.

If we assume that the NAIRU exists, then the long-run Phillips curve must

be vertical. Any other rate of unemployment would either trigger substantial

deflation or substantial inflation over prolonged periods of time. That is, for

price levels to be stable, the markets must clear and any deviation from the

market-clearing point is unsustainable. Akerlof (2002) argues that this anal-

ysis is likely overly simplistic. Citing the exceedingly high, and sustained,

unemployment rates during the Great Depression and the lack of significant

deflation, he believes that the natural rate hypothesis does not hold. More-

over, he reasons that low levels of inflation promote real GDP growth and

lower levels of unemployment. It is only when inflation levels are high that

wage negotiations cause inflation to spiral out of control. Otherwise, workers

ignore inflation and bargain for nominal, and not real, wages. This assump-

tion is justifiable due to rational ignorance. However, levels of inflation that

are too low would inhibit employment and growth. Thus, any relationship

between unemployment and inflation must incorporate these nonlinearities

and is likely to be complex. Akerlof’s main contention is with monetary poli-

cies in Europe and Canada, which may have been overly restrictive in trying

to tame inflation, resulting in significant and prolonged unemployment.

Peter Ireland (1999) argues that past bouts of inflation were caused by

a combination of supply shocks causing unemployment to deviate from its

natural rate and of policymakers’ erroneous belief that there was a long-run



tradeoff between unemployment and inflation during the 1960s and 1970s,

they allowed unemployment to fall below the higher non-inflationary level

induced by the supply shock, consequently leading to higher inflation in the

long term. Ireland believes that periods of higher inflation are unavoidable

in the future unless policymakers start to place greater emphasis on combat-

ing inflation instead of promoting full-employment and unless they begin to

develop the capability to identify changes in the NAIRU. Laurence Ball and

Greg Mankiw (2002) subscribe to a different view. They argue that supply-

shocks–whether in the form of government policy, changes in demography,

and in productivity–shift the tradeoff relationship between unemployment

and inflation. According to their analysis, the tradeoff still exists, though is

affected by outside variables.

3 Difficulties in Macroeconomic Forecasting

Two of the biggest challenges facing macroeconomic forecasters are unit roots

and serial correlation. We have already mentioned unit roots, although we

called them random walks (Studenmund 2006). The consequences of both

of these phenomena can be severe. For example, if our dependent variable

is a random walk, then its changes are random. However, our regressions

assume that the changes in the dependent variable are driven by changes in

the independent variables, resulting in biased t-statistics and a biased R2.

Serial correlation is likewise troubling. In macroeconomic models, the



presence of serial correlation not only biases the estimates of our standard

errors but may also bias estimates in the presence of lagged dependent vari-

ables (Studenmund 2006). Moreover, Studenmund says that in such models,

serial correlation is harder to detect because the DW statistic is biased toward

2.

Given that the DW statistic is no longer an unbiased identifier of serial

correlation, we can either employ the Durbin m statistic or the Breusch-

Godfrey test, also called the LM test (Peter Kennedy 2003). For our pur-

poses, both will be useful. In the Breusch-Godfrey test, we first run our

model, collect p lagged residuals, and then use these lagged residuals as re-

gressors in the model. Note that if our model is a MA, ARMA, or ARIMA

model, we would first include the necessary residual terms εt, εt−1, . . ., and

εt−n for our model. Then we would look at the ηt, . . . , ηt− p, the p lagged

residual of our model once the ε terms have been included. If an F test

suggests that the lagged residuals have a statistically significant effect on

the dependent variable, then this is evidence of serial correlation (Kennedy

2003). The Durbin m test is very similar. The only difference is that instead

of choosing p lagged values, we choose one lagged value and use the prob-

ability value as evidence of serial correlation. Thus, the Durbin m test is

useful for identifying first-order serial correlation in the presence of a lagged

dependent variable while the Breusch-Godfrey test identifies pth order serial

correlation.

Once we have identified that serial correlation exists, we will need to



use the AR(1) method, an extension of the Cochrane-Orcutt method de-

scribed below (Studenmund 2003). By itself, the Cochrane-Orcutt method

cannot identify whether serial correlation exists. Instead we will first need

the Breusch-Godfrey or Durbin m test. However, once we have identified

that serial correlation exists and if we suspect the serial correlation is of the

first order, then we can use the Cochrane-Orcutt method to generate a new

equation without first order serial correlation. To make sure that higher or-

der serial correlations are not present, we could then test this new equation

using the Breusch-Godfrey or Durbin m tests.

After running AR(1) in the empirical section, we could find no evidence

for further serial correlation when replicating Lucas and Rapping’s (1969)

research. The AR(1) method was sufficient. When trying to replicate Stock

and Watson’s (1999) out-of-sample forecasting research, we ignored serial

correlation and relied exclusively on the Schwarz Criterion and Akaike’s In-

formation Criterion. Although the presence of serial correlation may bias

our estimates and result in reduced out-of-sample performance, the AR(1)

and Cochrane-Orcutt methods are likely to produce a biased estimate of the

serial correlation over the small regression samples we will use (Studenmund

2003). Moreover, these methods will also change the interpretation of the

dependent and independent variables, which would also be problematic. For

these reasons, we will ignore serial correlation when conducting our out-of-

sample forecasting.

Suppose we have a simple time series model with first order serial corre-



lation, in which our dependent variable yt depends only on a constant α0 and

a single independent variable, denoted xt. Then we could write our model as

follows:

yt = α0 + α1xt + εt

such that

εt = ρεt−1 + ηt.

This would be an example of first order serial correlation because εt, the error

term in our regression, depends on its lagged value and a classical random

error term, denoted ηt. This type of serial correlation is first order because

the error term depends only on its first lagged value. In this case, we might

notice that

ρyt−1 = ρα0 + ρα1xt−1 + ρεt−1,

and then

yt − ρyt−1 = α0(1− ρ) + α1(xt − ρxt−1) + (εt − ρεt−1).

Since εt − ρεt−1 = ηt, then we have

yt − ρyt−1 = α0(1− ρ) + α1(xt − ρxt−1) + ηt,

where ηt is not serially correlated.

Thus, if we can identify ρ, then we can easily get rid of first order serial



correlations in our models. In the Cochrane Orcutt method, we first regress

our first model

yt = α0 + α1xt + εt.

Then we collect the residuals and run the regression

εt = ρεt−1 + ηt.

From here, we create new variables x∗t , y
∗
t with

x∗t = xt − ρxt−1

and

y∗t = yt − ρyt−1.

We then iterate this process until our value of ρ has converged. This usu-

ally occurs after relatively few iterations (Studenmund 2003). The AR(1)

approach is almost identical to the Cochrane Orcutt method except that it

uses nonlinear techniques to compute superior estimates of the standard er-

rors. According to Studenmund (2003), AR(1) will actually estimate α0, α1,

and ρ jointly. In EViews, we implement the AR(1) method by adding AR(1)

as an independent variable in our regression.



4 Empirical Section

The fundamental relationship described by the Phillips curve is that any de-

viation in unemployment from its natural rate is associated with a deviation

in inflation from its expected rate. Let ut denote the unemployment rate and

πt denote inflation at a time period t. Denote the natural rate of unemploy-

ment and expected inflation rate at time t as ūt and πe
t , respectively. Then

we would write

(ut − ūt) = α(πt − πe
t )

if we were interested in analyzing unemployment or

(πt − πe
t ) =

1

α
(ut − ūt)

if we were more interested in forecasting inflation. To see a picture of how

these Phillips curves are related, see Figure 1. Note that both sides of Fig-

ure 1 illustrate the tradeoff that policymakers face between inflation and

unemployment. From the figure, we see that policymakers can achieve a

lower unemployment rate in the short-run only at the expense of an increase

of inflation above the expected value. In the long-run, however, as people

adjust their expectations, deviations from the natural rate of unemployment

prove unsustainable, and so inflation will have no effect on the long-run rate

of unemployment.

However, unemployment is not the only variable we can use to specify the
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Figure 1: Two Ways of Representing the Phillips Curve

Phillips curve. After all, labor is only one input in the production process.

Capital is another. Based on Stock and Watson’s (1999) conclusions, we

may be equally interested in using capacity utilization instead of labor. Stock

and Watson find that forecasts based on capacity utilization provide superior

forecasts to those based on unemployment. If we denote the manufacturing

capacity gap in our system as (x̄t − xt), with x̄t equal to one and xt the

percentage of the potential capacity currently in use, then the difference

measures the excess manufacturing capacity, which is the variable we will

use in our regressions later. If we wanted to include these variables in the

Phillips curve, then we could rewrite the Phillips curve as

(πt − πe
t ) =

1

α
(ut − ūt) + β(x̄t − xt).

If we assumed that expected inflation was equal to the inflation in the last



quarter, then we would get that πe
t = πt−1 and that

πt = πt−1 +
1

α
(ut − ūt) + β(x̄t − xt).

If we assume that ūt is fixed, and if we denote c = −ū
α , then our new model

may be written as

πt = c + πt−1 +
1

α
ut + β(x̄t − xt), (2)

which is now in a form suitable for regressions. We should mention that our

treatment of expectations in this model is relatively crude. We assume that

πe
t = πt−1. Implicitly we are saying that information about present condi-

tions has no effect on people’s expectations. For out-of-sample forecasting

purposes, however, this is often the best we can do.

One way to incorporate information about the present is to employ adap-

tive expectations, although as we hinted at before, these are much easier to

implement in in-sample forecasts. In fact, Lucas and Rapping’s (1969) pa-

per was significant because they incorporated adaptive expectations into the

Phillips curve and found evidence rejecting a stable long term tradeoff be-

tween inflation and unemployment. Previously, expectations were treated in

a manner that was similar to Equation 2, which led to estimations valid only

for short time periods and that were highly unstable. Lucas and Rapping

were interested in discovering whether they could find evidence of a long-

run and stable Phillips curve once they incorporated expectations into their



model. In order to include expectations, they assumed that people’s expecta-

tions in a time period t depended on their expectations of the previous time

period and their observations in the present. Specifically, Lucas and Rapping

assumed that individuals could not perfectly predict future prices and real

wages, denoted Pt and wt. Instead, they assumed that people adapted their

expectations in the following manner:

ln(w∗
t ) = λ ln(wt) + (1− λ) ln(w∗

t−1) (3)

ln(P ∗
t ) = λ ln(Pt) + (1− λ) ln(P ∗

t−1) (4)

where P ∗
t and w∗

t denote expected prices and expected real wages at time t,

respectively. Here λ denotes how quickly people update their future expec-

tations based on present conditions. If λ = 0, then we assume that people’s

expectations, once formed, are fixed. If λ = 1, then people expect that the

future will be no different than the present.

Lucas and Rapping also modeled the equilibrium quantity of labor, and

hence the unemployment rate, as a function of the ratio of past expected

wages to current wages and the ratio of past expected prices to current prices.

Then

ut = β0 + β1 ln

(
w∗

t−1

wt

)
+ β2 ln

(
P ∗

t−1

Pt

)
.

Their model was derived from a labor supply model, which was published



later that year (see Rapping and Lucas 1969). To be precise, w∗ does not refer

to the expected wage but to the expected permanent wage. This distinction

will be significant when trying to sign β1 and β2.

What do we mean by permanent? In a 1957 book, Friedman first hypoth-

esized the existence of what he called a “permanent income.” The hypothesis

was called the permanent income hypothesis, and it would later help him win

the Nobel Prize in 1976. To understand the significance of his hypothesis,

we will first try to understand the state of economic thinking at that time.

During the 1950s and 1960s, economists were trying to reconcile why

the available data conflicted with their understanding of consumer behav-

ior. Keynes had hypothesized that consumption depends only on income

and autonomous consumption. Moreover, for every one unit increase in in-

come, he believed that consumption increased by less than one. This implied

that as income continued to rise, the ratio of consumption to income would

fall. However, Simon Kuznets collected data from 1869 to the 1940s, which

showed that the ratio of consumption to income, also called the average

propensity to consume (APC), remained constant over long time periods

(Mankiw 2003). Kuznets’ finding directly contradicted Keynes’ hypothesis

and previous household consumption studies (which were over shorter time

intervals), both of which predicted that the APC would fall as consumers

became wealthier.

Milton Friedman suggested that perhaps Keynes was looking at the wrong

type of income. Friedman suggested that instead of spending based off real-



ized income, consumers spent based off income they could reasonably expect

to receive in the future. For example, when wages started to increase due

to unanticipated productivity advances–at least when unanticipated by the

workers–following World War II, then Friedman’s hypothesis suggested that

at first workers might expect such wage gains to be a result of the current

state of the business cycle. It would take time, and maybe even a recession,

before workers would realize that the wage gains resulting from productivity

increases were likely permanent. If wages were thought to be transitory, we

would expect workers to maintain their current life style. Only once they

realize that such wage gains are permanent would we expect them to adjust

their consumption.

The difference between observable income and the income that work-

ers consider permanent helps us understand why Kuznets’ data contradicted

Keynes’ theory. When economists analyzed time intervals too short for work-

ers to determine how much income was likely to be permanent, they found

that consumption failed to keep pace with income. Over time periods long

enough for all permanent changes in income to be identified, the average

propensity to consume was stable.

Thus, we could interpret the variable w∗
t−1 as the portion of real wages

from the last period that workers considered permanent. If a worker received

a bonus, we would expect that if the bonuses were volatile or if this were a

one-time event, then the bonus would not be included in w∗
t−1 but would be

included in wt−1. Therefore, if present wage wt is greater than the estimated



permanent wage from last year w∗
t−1, then a worker would likely consider the

present a good opportunity to work. He would likely be willing to work in

the present, when the reward for working is higher, and would likely defer

leisure to a time when current wages are below what workers would expect

to receive. Consequently, the unemployment rate should fall.

When wt > w∗
t−1, then

ln

(
w∗

t−1

wt

)
< 0.

Since we would predict that rising real wages would increase the quantity of

labor supplied and reduce the unemployment rate, then β1 should be greater

than zero. Likewise, when expected prices are below actual prices, then

a worker suffers a negative income shock, and we would expect him to be

willing to work more, lowering the unemployment rate. Thus, β2 should also

be positive.

Now that we have signed the coefficients for our model, we need to convert

it to a regressable form. After some algebraic manipulations (see Appendix

A), we find that our model is equivalent to:

ut = λβ0 − β1

[
ln

(
wt

wt−1

)]
− β2

[
ln

(
Pt

Pt−1

)]
+ (1− λ)ut−1 (5)

where λ was the adjustment factor from before. Note that Equation 5 is

in a form that we can use for regressions because all of the included vari-

ables are observable. The purpose of these algebraic manipulations was to



rid the original model of any explicit use of expectations. Since wages and

unemployment are jointly determined in the labor market, we will need an

instrument for wt to use in our regression. For our regression, we will use the

reduced-form wage rate equation provided by Lucas and Rapping (1969) as

our instrument.

We should mention that Lucas and Rapping assume that prices are de-

termined outside of the labor market. So then the only two codetermined

variables in our model are unemployment and wages, though Lucas and Rap-

ping use the natural log of wages as the other dependent variable in their

system. If we were interested in estimating ln(wt), we would use Lucas and

Rapping’s reduced-form unemployment rate equation as an instrument for

unemployment in order to estimate ln(wt). However, since we are only inter-

ested in the relationship between the unemployment rate and its sensitivity

to changes in real wages and prices, we restrict our attention to Equation 5.

We consider the years from 1947 to 2006. We initially tested for a struc-

tural break in our model in 1973 because many other macroeconomic models

fundamentally changed following the simultaneous occurrences of the 1973

oil shocks, the decline of the Bretton Woods system, the Nixon price con-

trols, and a U.S. dollar devaluation. However, our Wald test failed to reject

a structural break in 1973. Regardless, we will show our regressions for the

1947–1973 and 1974–2006 subsamples in Table 2. Note that in Table 2, sig-

nificance is measured as two tail significance, though Lucas and Rapping used

one tail significance. Furthermore, notice that while the coefficients of the



Table 2: Estimates for Expectations Adjusted Phillips Curve
1947–2006 1947–1973 1974–2006

c 4.18 4.75 4.31
(0.98)∗∗∗ (1.48)∗∗∗ (1.30)∗∗∗

ln
(

Pt
Pt−1

)
-29.44 -35.4 -48.8

(11.1)∗∗ (12.9)∗∗ (24.3)∗

ln
(

Pt−1

Pt−2

)
36.1 18.0 67.8

(10.2)∗∗∗ (13.0) (25.1)∗∗

ln
(

wt
wt−1

)
-58.0 -50.7 -57.4

(17.1)∗∗∗ (22.7)∗∗ (25.7)∗∗

ut−1 0.76 0.82 0.48
(0.17)∗∗∗ (0.21)∗∗∗ (0.31)

ut−2 -0.37 -0.45 -0.20
(0.16)∗∗ (0.21)∗∗ (0.22)

AR(1) -0.07 -0.41 -0.00
(0.18) (0.27) (0.24)

Adj. R2 0.60 0.52 0.58

Breusch-Godfrey Test 0.40 0.99 0.17
Prob. with p = 3

∗
∗∗
∗ ∗ ∗




 two tail significance at






0.10
0.05
0.01



1947–1973 subsample are generally insignificant, they shared the same sign

as the coefficients in the later sample. In fact, our Wald test for a structural

break in 1973 suggested that the model appeared to be relatively stable over

both time periods.

As we explained before, we would expect that the coefficients β1 and β2

to be positive. Recall that in Equation 5 the coefficients on the wage and

price variables were −β1 and −β2, respectively. So we would expect the signs

in our regression to be negative. Note that the wage coefficient is negative

and significant. Although the summed coefficients on the price variables are

positive, we will show that they are not significantly different from zero.

Let H0 denote the null hypothesis that the sum of the price coefficients

is zero. Likewise, let H1 denote the null hypothesis that the wage coefficient

is zero. For example, if we fail to reject H0 over one time period, then

this suggests that there is no long-run tradeoff between price inflation on

unemployment over this time period. Hence, the long-term Phillips curve

is vertical. If we fail to reject H1, then this suggests that policy changes

designed to change the real wages, and consequently the demand for workers,

have no effect on the unemployment rate. Table 3 provides the F -tests’

probabilities for these hypotheses across the different samples considered.

Note that when testing H1, since there is only one wage variable, the F -test’s

probability is equal to the p-value of the t-statistic in the original regressions.

Note that the sum of the price variables is statistically different from zero

in only one sample but that the wage variable is statistically different from



Table 3: F -tests’ Probabilities for Null Hypotheses
Period H0 H1

1947–2006 0.34 0.00

1947–1973 0.18 0.04

1974–2006 0.03 0.03

zero in all three samples. Judging by the relative stability of the coefficients

of the Phillips curve in the three regressions from Table 2 and our failure to

reject H0, our findings suggest that the Phillips curve is relatively stable but

vertical for the years 1947 to 2006.

For policy purposes, this suggests that the Phillips curve is vertical over

time intervals as short as 25 years. This implies that unemployment and in-

flation are uncorrelated, which contradicts Stock and Watson’s (1999) finding

that the Phillips curve is the best predictor of inflation for the last 40 or so

years.

Moreover, Stock and Watson’s finding was contested by Lee and Ohanian

(2001), who found that the forecasting ability of the Phillips curve declined

in the years following Stock and Watson’s forecasts. We will now assess to

what extent changes in the unemployment rate predict changes in the rate

of inflation. We will use the three samples described in Table 4. We choose

these forecasting intervals in order to account for the 1972 energy crisis and

the information technology revolution starting in the early 1990s. For each

of these sample periods, we will consider an autoregressive model, a con-



Table 4: Description of Forecasts
Sample 1 Sample 2 Sample 3

Regression Intervals 1947–1955 1960–1972 1980–1990

Forecasting Intervals 1956–1972 1973–1990 1991–2007

ventional Phillips curve with unemployment as an independent variable, a

modified Phillips curve that uses capacity utilization instead of unemploy-

ment, and a bivariate model including both unemployment and capacity

utilization. In addition, we will also combine the Phillips curves’ forecasts

into a combined prediction and compare all of these to a näıve prediction of

inflation. For the näıve measure, we will assume that inflation one year later

is equal to the average inflation rate over the last four quarters.

Our model specifications are given in Tables 5, 6, and 7. We chose the

independent variables according to Akaike’s Information Criterion and the

Schwarz Criterion for the regression intervals. Then we conducted out-of-

sample forecasting by predicting inflation using the values of the independent

variables in the forecasting interval through EViews’ forecast command.

To measure the accuracy of our forecasts, we compared the RMSE values

for each of the models. These values are given in Table 8. Notice that in the

first sample period, the näıve model outperformed all others. This is because

all of our other models either overestimated inflation in the late 1950s and

early 1960s or they were unable to predict the inflationary spike preceding

1972. In the other sample periods, the näıve model is one of the weakest



Table 5: Model Specification for Sample 1

AR Model πt+4 = c0 + c1πt + c2πt−2 + εt

Phillips Curve 1 πt+4 = c0 + c1πt + c2ut + c3ut−1 + c4ut−4 + εt

Phillips Curve 2 πt+4 = c0 + c1πt + c2xt + c3xt−1 + c4xt−4 + εt

Bivariate Model πt+4 = c0 + c1πt + c2xt + c3ut + c4ut−1 + εt

Combined Forecasts Use predicted values from both Phillips curves

Näıve Model πt+4 = πt+πt−1+πt−2+πt−3

4 + εt

Table 6: Model Specification for Sample 2

AR Model πt+4 = c0 +
∑4

i=0 (ci+1πt−i) + εt

Phillips Curve 1 πt+4 = c0 +
∑4

i=0 (ci+1πt−i) + c6ut + εt

Phillips Curve 2 πt+4 = c0 +
∑4

i=0 (ci+1πt−i) + c6xt + εt

Bivariate Model πt+4 = c0 +
∑4

i=0 (ci+1πt−i) + c6ut + c7xt + εt

Combined Forecasts Use predicted values from both Phillips curves

Näıve Model πt−4 = πt+πt−1+πt−2+πt−3

4



Table 7: Model Specification for Sample 3

AR Model πt+4 = c0 + c1πt + εt

Phillips Curve 1 πt+4 = c0 + c1πt + c2ut + εt

Phillips Curve 2 πt+4 = c0 + c1πt + c2xt + εt

Bivariate Model πt+4 = c0 + c1πt + c2xt + c3ut + εt

Combined Forecasts Use predicted values from both Phillips curves

Näıve Model πt−4 = πt+πt−1+πt−2+πt−3

4 + εt

Table 8: RMSEs of Different Models
1956–1972 1973–1990 1991–2007

AR Model 2.69 1.40 0.52

Phillips Curve 1 3.59 1.73 0.71

Phillips Curve 2 3.37 1.51 0.57

Bivariate Model 3.45 1.74 0.55

Combined Forecasts 3.55 1.56 1.39

Näıve Model 1.28 2.29 0.84



predictors overall. Of the other models considered, the autoregressive model

is the best performing model. This is surprising, considering that all of

the other models include the autoregressive terms and some unemployment

and/or capacity utilization terms. This suggests that perhaps Lee and Oha-

nian were correct to argue that the Phillips curve provides poor predictions.

Even the capacity utilization specification of the Phillips curve, which Stock

and Watson found to be one of the best predictors over their time samples,

underperformed.

Of course, it is also possible that our findings simply mean that the SIC

and AIC criteria were ill-suited for determining the relevant independent

variables. That said, without Stock and Watson’s intimate knowledge of

inflation models, these two criteria are some of the best tools available to us.

One final difference between our work and Stock and Watson’s is that we did

not stipulate that the inflation coefficients add to one.

In spite of all these differences, it is striking that over all three fore-

cast intervals with different specifications, the autoregressive model was only

outperformed in one sample, and that was by our näıve model. From our

regressions, there appears to be no evidence that unemployment or capacity

utilization terms help to explain the changes in the rate of inflation.

Thus, our research suggests that in the long-run the Phillips curve is ver-

tical, with no tradeoff between unemployment and inflation for policymakers,

and that the short-run Phillips curve, if it even exists, is hard to estimate.



5 Conclusion

In this paper, we reviewed the history of forecasting and how it related

to the evolution of macroeconomic models. We then turned our attention

to inflation forecasts and the Phillips curve, one of the most controversial

topics in the field of macroeconomic forecasting, and tried to assess the extent

to which we can find evidence supporting or rejecting the existence of the

Phillips curve. In our empirical section, we found no evidence for either a

tradeoff between inflation and unemployment or a short-run Phillips curve

during the last fifty years. This suggests that, by itself, the Phillips curve

should have only a limited role when conducting inflation forecasts, although

further research is still needed.

A Deriving the Lucas Rapping Regression

Lucas and Rapping (1969) assumed that the quantity of labor, and hence the

unemployment rate, depended on the ratio of estimates of past permanent

real wages to current real wages and the ratio of past expected prices to

current prices. Then:

ut = β0 + β1 ln

(
w∗

t−1

wt

)
+ β2 ln

(
P ∗

t−1

Pt

)



and we can solve for ut by using equations 3 and 4 and through the following

algebraic manipulations:

ut = β0 + β1 ln

(
w∗

t−1

wt

)
+ β2 ln

(
P ∗

t−1

Pt

)

= β0 + β1[ln(w∗
t−1)− ln(wt)] + β2[ln(P ∗

t−1)− ln(Pt)]

= β0 + β1[λ ln(wt−1) + (1− λ) ln(w∗
t−2)− ln(wt)] +

β2[λ ln(Pt−1) + (1− λ) ln(P ∗
t−2)− ln(Pt)]

= λβ0 + (1− λ)β0 + β1[ln(wt−1) + (λ− 1) ln(wt−1) + (1− λ) ln(w∗
t−2)− ln(wt)] +

β2[ln(Pt−1) + (λ− 1) ln(Pt−1) + (1− λ) ln(P ∗
t−2)− ln(Pt)]

= λβ0 +−β1[ln(wt)− ln(wt−1)]− β2[ln(Pt)− ln(Pt−1)] +

(1− λ)[β0] + β1[(λ− 1) ln(wt−1) + (1− λ) ln(w∗
t−2)] +

β2[(λ− 1) ln(Pt−1) + (1− λ) ln(P ∗
t−2)]

= λβ0 − β1[ln

(
wt

wt−1

)
]− β2[ln

(
Pt

Pt−1

)
] +

(1− λ)[β0] + β1[(1− λ) ln(w∗
t−2)− (1− λ) ln(wt−1)] +

β2[(1− λ) ln(P ∗
t−2)− (1− λ) ln(Pt−1)]

= λβ0 − β1[ln

(
wt

wt−1

)
]− β2[ln

(
Pt

Pt−1

)
] +

(1− λ)[β0 + β1(ln(w∗
t−2 − ln(wt−1)) +

β2(ln(P ∗
t−2)− ln(Pt−1))]

= λβ0 − β1[ln

(
wt

wt−1

)
]− β2[ln

(
Pt

Pt−1

)
] + (1− λ)ut−1



B Instrumental Variables and Data Sources

To extend Lucas and Rapping’s research, we needed to first estimate ln(wt)

in order to predict the rate of unemployment. The regression we conducted

to estimate ln(wt) is given below:

ln(wt) = β + β1 ln(wt−1) + β2 ln

(
Pt

Pt−1

)
+ β3 ln

(
Nt−1

Mt−1

)
+

+β4 ln

(
Nt−1Qt−1

yt−1

)
+ β5 ln

(
yt

yt−1

)
+ β6 ln(Qt) + β7 ln

(
yt

Mt

)
.

Wages were measured as non-farm business compensation and then converted

to real terms. The price level was measured by the real GDP deflator. The

quantity of labor supplied, Nt, was measured as the total number of hours

provided by workers and was calculated from the payroll count and the weekly

hours worked per worker. Mt measures the total number of households in

the economy according to the Census Bureau. yt measures the real GDP.

Qt denotes the quality of workers, as measured by the median years of ed-

ucation provided by the Census, which is available at http://www.census.

gov/population/www/socdemo/educ-attn.html. During the early years for

which the education data were missing, we regressed our data on the data

provided by Lucas and Rapping. To fill in the later missing observations,

we used the information on percentages with each type of education to esti-

mate roughly how many years of education the 50th percentile would have

completed assuming a uniform distribution within each category (e.g., high



school degree). The only other variable used in our regression is the un-

employment rate, which was obtained from the Federal Reserve Bank of St.

Louis. The above variables with unlisted sources were similarly obtained

from the Federal Reserve Bank of St. Louis.

The data for the second portion of the empirical research was also primar-

ily gathered from the Federal Reserve Bank of St. Louis. The price level was

measured by the GDP deflator. The capacity utilization rate in manufactur-

ing was obtained from the Federal Reserve at http://www.federalreserve.

gov/Releases/G17/caputl.htm.

References

[1] G. A. Akerlof, Behavioral Macroeconomics and Macroeconomic Be-
havior, The American Economic Review, 92 (2002), pp. 411–433.

[2] Akerlof, George A., Dickens, William T., Perry, George
L., Bewley, Truman F., and Blinder, Alan S., Near-Rational
Wage and Price Setting and the Long-Run Phillips Curve, Brookings
Papers on Economic Activity, 2000 (2000), pp. 1–60.

[3] Atkeson, Andrew and Ohanian, Lee E., Are Phillips Curves
Useful for Forecasting Inflation?, Federal Reserve Bank of Minneapo-
lis Quarterly Review, 25 (2001), pp. 2–11.

[4] Ball, Laurence and Mankiw, N. Gregory, The NAIRU in The-
ory and Practice, The Journal of Economic Perspectives, 16 (2002),
pp. 115–136.

[5] B. S. Bernanke, Inflation Expectations and Inflation Forecasting.
Monetary Economics Workshop of the National Bureau of Economic
Research Summer Institute, Cambridge, Massachusetts, July 2007.



[6] A. S. Blinder, Is there a core of practical macroeconomics that we
should all believe?, The American Economic Review, 87 (1997), pp. 240–
243.

[7] Brayton, Flint, Levin, Andrew, Tryon, Ralph, and
Williams, John C., The Evolution of Macro Models at the Federal
Reserve Board, February 1997.

[8] C. D. Carroll, Macroeconomic Expectations of Households and Pro-
fessional Forecasters, Quarterly Journal of Economics, 118 (2003),
pp. 269–298.

[9] C. Chatfield, Forecasting in the 1990s, The Statistician, 46 (1997),
pp. 461–473.

[10] F. X. Diebold, The Past, Present, and Future of Macroeconomic Fore-
casting, The Journal of Economic Perspectives, 12 (1998), pp. 175–192.

[11] , Elements of Forecasting, South-Western, 2001.

[12] Diebold, Francis X. and Rudebusch, Glenn D., Measuring Busi-
ness Cycles: A Modern Perspective, The Review of Economics and
Statistics, 78 (1996), pp. 67–77.

[13] Dominguez, Kathryn M., Fair, Ray C., and Shapiro,
Matthew D., Forecasting the Depression: Harvard Versus Yale, The
American Economic Review, 78 (1988), pp. 595–612.

[14] Elliott, Graham and Timmerman, Allan, Economic Forecasting,
Journal of Economic Literature, 46 (2008), pp. 3–56.

[15] I. Fisher, I Discovered the Phillips Curve: “A Statistical Relation
between Unemployment and Price Changes”, The Journal of Political
Economy, 81 (1973), pp. 496–502.

[16] M. Friedman, The Role of Monetary Policy, The American Economic
Review, 58 (1968), pp. 1–17.

[17] , Nobel Lecture: Inflation and Unemployment, The Journal of Po-
litical Economy, 85 (1977), pp. 451–472.



[18] J. K. Galbraith, Time to Ditch the NAIRU, The Journal of Economic
Perspectives, 11 (1997), pp. 93–108.

[19] Gooijer, Jan G. De and Hyndman, Rob J., 25 Years of Time
Series Forecasting, International Journal of Forecasting, 22 (2006),
pp. 443–473.

[20] R. J. Gordon, The Time-Varying NAIRU and its Implications for
Economic Policy, The Journal of Economic Perspectives, 11 (1997),
pp. 11–32.

[21] C. W. J. Granger, Can We Improve the Perceived Quality of Eco-
nomic Forecasts?, Journal of Applied Econometrics, 11 (1996), pp. 455–
473.

[22] S. Hall, Macroeconomics and a Bit More Reality, The Economic Jour-
nal, 105 (1995), pp. 974–988.

[23] J. D. Hamilton, A New Approach to the Economic Analysis of Nonsta-
tionary Time Series and the Business Cycle, Econometrica, 57 (1989),
pp. 357–384.

[24] P. N. Ireland, Does the Time–Consistency Problem Explain the Be-
havior of Inflation in the United States?, Journal of Monetary Eco-
nomics, 44 (1999), pp. 279–291.

[25] P. Kennedy, A Guide to Econometrics, The MIT Press, 2003.

[26] Kydland, Finn E. and Prescott, Edward C., Time to Build and
Aggregate Fluctuations, Econometrica, 50 (1982), pp. 1345–1370.

[27] T. Laubach, Measuring the Nairu: Evidence from Seven Economies,
The Review of Economics and Statistics, 83 (2001), pp. 218–231.

[28] R. G. Lipsey, The Relationship between Unemployment and Rate of
Change of Money Wage Rates in the United Kingdom, 1862–1957: A
Further Analysis, Economica, 27 (2001), pp. 1–31.

[29] R. E. Lucas, Econometric Policy Evaluations: a Critique, Carnegie-
Rochester Conference Series on Public Policy, 1 (1976), pp. 19–46.



[30] Lucas, Robert E. and Rapping, Leonard A., Price Expecations
and the Phillips Curve, The American Economic Review, 59 (1969),
pp. 342–350.

[31] N. G. Mankiw, The Inexorable and Mysterious Tradeoff between Infla-
tion and Unemployment, The Economic Journal, 111 (2001), pp. C45–
C61.

[32] , Macroeconomics, Worth Publishers, 2003.

[33] M. P. Murray, A Drunk and Her Dog: An Illustration of Cointe-
gration and Error Correlation, The American Statistician, 48 (1994),
pp. 37–39.

[34] C. R. Nelson, The Prediction Performance of the FRB-MIT-PENN
Model of the U.S. Economy, The American Economic Review, 62 (1972),
pp. 902–917.

[35] Newbold, P. and Granger, C. W. J., Experience with Forecasting
Univariate Time Series and the Combination of Forecasts, Journal of the
Royal Statistical Society. Series A (General), 137 (1974), pp. 131–165.

[36] E. S. Phelps, The New Microeconomics in Inflation and Employment
Theory, The American Economic Review, 59 (1969), pp. 147–160.

[37] A. W. Phillips, The Relation between Unemployment and the Rate
of Change of Money Wage Rates in the United Kingdom, 1861-1957,
Economica, 25 (1958), pp. 283–299.

[38] Rapping, Leonard A. and Lucas, Robert E., Real Wages, Em-
ployment, and Inflation, The Journal of Political Economy, 77 (1969),
pp. 721–754.

[39] Samuelson, Paul A. and Solow, Robert M., Analytical Aspects
of Anti-Inflation Policy, The American Economic Review, 50 (1960),
pp. 177–194.

[40] C. A. Sims, Macroeconomics and Reality, Econometrica, 48 (1980),
pp. 1–48.

[41] E. Slutsky, The Summation of Random cause as the Source of Cyclic
Processes, Econometrica, 5 (1937), pp. 105–146.



[42] Staiger, Douglas, Stock, James H., and Watson, Mark W.,
The NAIRU, Unemployment and Monetary Policy, The Journal of Eco-
nomic Perspectives, 11 (1997), pp. 33–49.

[43] Stock, James H. and Watson, Mark W., Forecasting Inflation,
Journal of Monetary Economics, 44 (1999), pp. 293–335.

[44] , Vector Autoregressions, The Journal of Economic Perspectives, 15
(2001), pp. 101–115.

[45] , Has Inflation Become Harder to Forecast? Prepared for the con-
ference, Quantitative Evidence on Price Determination, Board of Gov-
ernors of the Federal Reserve Board, September 29-30, Washington DC,
Sept. 2005.

[46] A. H. Studenmund, Using Econometrics: A Practical Guide, Pearson
Education, Inc., 2006.

[47] H. Wold, A Study in the Analysis of Stationary Time Series, PhD
thesis, University of Stockholm, 1938.

[48] G. U. Yule, On a Method of Investigating Periodicities in Disturbed Se-
ries, with Special Reference to Wolfer’s Sunspot Numbers, Philosophical
Transactions of the Royal Society of London, 226A (1927), pp. 267–298.


