
Graphics Programming

Principles and Algorithms

Zongli Shi

May 27, 2017

Abstract

This paper is an introduction to graphics programming. This is a computer science field
trying to answer questions such as how we can model 2D and 3D objects and have them displayed
on screen. Researchers in this field are constantly trying to find more efficient algorithms for
these tasks. We are going to look at basic algorithms for modeling and drawing line segments,
2D and 3D polygons. We are also going to explore ways to transform and clip 2D and 3D
polygons. For illustration purpose, the algorithms presented in this paper are implemented in
C++ and hosted at GitHub. Link to the GitHub repository can be found in the introduction
paragraph.

1 Introduction

Computer graphics has been playing a vital role in communicating computer-generated information
to human users as well as providing a more intuitive way for users to interact with computers. Al-
though nowadays, devices such as touch screens are everywhere, the effort of developing graphics
system in the first place and beauty of efficient graphics rendering algorithms should not be underes-
timated. Future development in graphics hardware will also bring new challenges, which will require
us to have a thorough understanding of the fundamentals. This paper will mostly investigate the
various problems in graphics programming and the algorithms to solve them. All of the algorithms
are also presented in the book Computer Graphics by Steven Harrington [Har87]. This paper will
also serve as a tutorial, instructing the readers to build a complete graphics system from scratch. At
the end we shall have a program manipulating basic bits and bytes but capable of generating 3-D
animation all by itself. To better assist the reader in implementing the algorithms presented in this
paper, the writer’s implementation in C++ can be found in the following GitHub link:

https://github.com/shizongli94/graphics_programming.

2 Basic Problems in Graphics

The basic problems in graphics programming are similar to those in any task of approximation. The
notion of shapes such as polygons and lines are abstract, and by their definitions, continuous in
their nature. A line can extend to both directions forever. A polygon can be made as large as we
want. However, most display devices are represented as a rectangle holding finitely many individual
displaying units called pixels. The size of the screen limits the size of our shapes and the amount
of pixels limit how much detail we can put on screen. Therefore, we are trying to map something
continuous and infinite in nature such as lines and polygons to something discrete and finite. In this
process, some information has to be lost but we should also try to approximate the best we can.
We will first look at how to draw a line on screen to illustrate the process of building a discrete
representation and how to recover as much lost information as we can.

1

https://github.com/shizongli94/graphics_programming

3 Drawing a Line Segment

Since a line is infinite in its nature, we have to restrict ourselves to drawing line segments, which will
a be reasonable representation of infinite line when going from one side of a screen to another. The
simplest way to represent a line segment is to have the coordinates of its two end points. One way
of drawing a line segment will be simply starting with one end point and on the way of approaching
the other, turning on pixels.

This approach resembles our experience of drawing a line segment on paper, but it poses two
questions. First, on what criterion should we select a pixel? And second, if the criterion is set, how
do we efficiently select the required pixels? For the first question, let us define X as the pixel on
row r and column c, and the lines y = r and x = c running through X and intersecting at its center.
We also denote L as the line segment with end points (x1, y1) and (x2, y2) where x1 ≤ x2. We then
will have a criterion when |m| < 1/2 (m is the slope) as follows:

Pixel X will be turned on if y1 < r < y2, x1 < c < x2 and if the intersecting point of
x = c and L is within the boundaries of X. We shall not be concerned with when the line
crosses x = c at one of the boundaries of pixel X, because choosing either pixel adjacent
to this boundary has no effect on our line representation.

Notice that we are using the typical mathematical coordinate system with origin at the lower left
corner despite most device manufacturers putting the origin at the upper left corner of a screen. Also
we are going to use indices starting from 0 instead of 1. This is the typical approach in computer
programming.

This is for the case |m| < 1/2. For future reference, we call it the gentle case. For the steeper
case when |m| > 1/2, we simply re-label the x-axis as the y-axis and y-axis as the x-axis. When
labels are interchanged, those two cases are basically the same. They both have the absolute value
of slope smaller than 1/2.

But why do we bother to divide into two cases? We will see in a moment that this division into
cases dramatically simplifies our problem of selecting pixels. When looking at Figure 1, we see that
pixel at (1, 1) is selected and turned as well as the pixel at (2, 2). The pixel at (0, 0) is not selected
even though the line segment starts within its boundaries. The pixel at (2, 1) is not selected either
even though there is a portion of the line segment running through it.

4 The First Algorithm: DDA

The first algorithm we are going to introduce is DDA. It stands for Digital Differential Analyzer.
Before we start to see how the algorithm works, let’s first answer why we need to divide line
drawing into two cases and restrict ourselves only to the gentle case. Referring to Figure 1 and
only considering positive slope, notice that when the line segment starts from the pixel at (0, 0), it
faces two choices. If it is gentle enough, it will enter the pixel at (1, 0) and crosses x = 1 before
leaving it. Otherwise, it will go into pixel (1, 1) and cross its line x = 1 before leaving it. However,
it will never be able to reach the pixel (1, 2), because its slope is no larger than 1/2. Therefore we
only need to choose one out of the two possible pixels. Furthermore, we already know where the two
pixels are located. If the pixel where the line segment starts is at row y0 and column x0, the two
pixels we need to choose from will both be in the next column x0 +1. One of them will be in row x0,
same as the original pixel. The other will be in row x0 + 1, only one level above the original pixel.
Then our algorithm can be described as starting with one pixel, and scanning each column of pixels
from left to right. Every time when we are entering the next column, we either choose the pixel in
the same row as the pixel in the previous column, or we choose the pixel in the row one level above
the pixel in the previous column. When the slope is negative, we still only have two pixels to choose
from. If the pixel we start from is at (x0y0), then the pixels we choose from are (x0 + 1, y0) and
(x0 + 1, y0 − 1). For future explanations, we are going to use the grid in Figure 2 as representation
of a screen. Notice the origin in the grid is the lower left corner of a rectangular screen. The pixels
below x-axis and the pixels to the left of y-axis are not shown on screen. For simplicity, the upper
and right boundaries of the screen are not shown.

2

y = 0

y = 1

y = 2

x = 0 x = 1 x = 2

Figure 1: Criterion on how to select a pixel

x

y

Figure 2: A Screen of Pixels

3

B0

P0

x

y

Figure 3: An Example of DDA Algorithm

B1

P1

x

y

Figure 4: The state of the program right after coloring a pixel in the second column

To understand an algorithm, it is always helpful to have a sense of the idea behind it. For
DDA, when we are scanning the columns one by one, the movement from one column to another is
essentially the same as adding 1 each time to the x-coordinate. Since a straight line has a constant
rate of change, we can exploit this property by adding m, the value of slope, to the y-coordinate
each time we move to a new column. This is the idea behind DDA. To describe the implementation
details, we define a crossing point to be the point where the line segment of interest crosses the
center line of a column. We obtain the coordinates of first crossing point P0 as (x0, y0) and distance
h between P0 and B0, which is the central point of the row boundary right below P0. We use h to
determine if we want to color subsequent pixels. When we move to the column x0 + 1, we add m
to h. If h < 1, we color the pixel (x0 + 1, y0). If h > 1, we color the pixel (x0 + 1, y0 + 1) and we
subtract 1 from h. However, we can not use h to determine the first pixel we want to color because
there is not a pixel in the previous color we can refer to. At column x0, we simply color the pixel in
row ceil(y0). This seemingly arbitrary choice satisfies our criterion of coloring pixels. To illustrate
this process, Let us have a line segment from (1.2, 2.1) to (8.7, 4.8). This line segment has a slope
m = 0.36 and is shown in Figure 3.

Referring to Figure 3, the initial value of h is then around 0.208, which is the distance from B0

to P0. The first pixel in the second column and the third row will be colored as in Figure 4
Referring to Figure 4, we find the new value of h to be 0.568 by adding m to the old h. Since

4

B′3

P3

x

y

Figure 5: The state of the program right after coloring a pixel in the fourth column

x

y

Figure 6: The state of the program right after coloring a pixel in the fifth column

0.568 < 1, we color the pixel in the same row in the third column. The procedure is repeated for
the fourth column as well, since the h for the third column is 0.928 < 1, we still color the pixel in
the same row. The result of coloring these two pixels is shown in Figure 5.

Now when the line moves into the fifth column, the value of h becomes 0.928+0.36 = 1.288 which
is larger than 1. Therefore the pixel in the fourth row, which is one row above the previous colored
pixels, is colored. After coloring, we subtract 1 from h, since h is now measuring the distance from
P3 to B′3 which is not the point on the closest boundary. To satisfy our definition of h, we subtract
1 to prepare determining which pixel to color in the sixth column. The result of finishing this step
is shown in Figure 6

What remains is simply repeating the steps we have done until we reach the last column where
we need to color a pixel.

5 Bresenham’s algorithm

Although the DDA algorithm is simple, it is not as efficient as it could be. One of the things that
slows it down is that DDA relies on floating point operations. If we can find a similar algorithm
which only uses integer operations, then the new algorithm is going to be significantly faster than
DDA. Since drawing line segments is a common task in graphics programming, finding such an

5

A

B

Figure 7: A line segment with integer coordinates at endpoints

algorithm will significantly improve the overall efficiency of the system. In the DDA algorithm, we
store the value of h in memory to determine which pixel to color in the next column. The value of h
serves as a criterion in determining rows, but in fact we do not really need to know the exact value
of h. At the end of computation in each column, the only thing we need to know is the Boolean
value whether or not we need to color the pixel in the same row. If TRUE, we color pixel in the
same row. If FALSE, we color the pixel only one row above. Namely, we only need to know one of
the two integers 0 or 1. Suppose we already colored the pixel in column x and row y, and we know
which pixel to color in column x + 1. If there is a way we can determine which pixel to color in
column x+ 2 based on the decision we made in column x+ 1, then the process of coloring pixels can
be improved by not having to adhere to a floating point value h. This is exactly where Bresenham’s
algorithm excels.

We will need a new criterion P instead of the old h and P has to be an integer otherwise there
is no improvement by using integer operations.

We also need the line segment of interest to be specified with integer coordinates. If not, we
simply round the coordinates to make them integers.

Now suppose we have a line segment specified by end points A and B with coordinates (m,n)
and (m′, n′) respectively where m, n, m′ and n′ are integers. Referring to Figure 7, we see the line
segment of interest. Since both end points have integer coordinates, they are located at the center of
a pixel. It is simple to draw the find the pixels occupied by A and B and color them. Now suppose
we have drawn a pixel in column xk and row yk. We need to find out which of the two pixels to
color in the next column xk + 1. Since the pixels are adjacent vertically, it is natural to use distance
as a way of determination. This is depicted in Figure 8

Denote the upper distance to be du and the lower distance to be dl. The three dots in Figure 8
refer to the center of the pixel (yk + 1, xk + 1), the intersecting point of the line of interest and the
line x = xk + 1, the center of the pixel (yk, xk + 1) respectively from top to bottom. If the line of
interest has an equation y = mx+ b, then we can find the coordinates of point (xk + 1, y):

y = m(xk + 1) + b

Then we can find the value of the two distances:

dl = y − yk
= m(xk + 1) + b− yk

du = yk + 1− y
= yk + 1−m(xk + 1)− b

6

Figure 8: Use distances to determine which pixel to color in column xk + 1[Tutb].

To use the distances as a criterion, we only need the value d, which is the difference of them, to
determine which pixel to color:

d = dl − du = 2m(xk + 1) + 2b− 2yk − 1

We multiply both sides with dx, which is equal to m′−m, or the difference between the x-coordinates
of the two end points:

(dx)d = 2(dy)(xk + 1) + 2(dx)b− 2(dx)yk − (dx)

= 2(dy)xk − 2(dx)yk + 2(dy) + 2(dx)b− (dx)

The expression on the left side of the equation above will be the criterion we use as we are moving
from column xk to column xk + 1. This criterion will be used to determine which pixel to draw
in column xk + 1 and we already know which pixel has been drawn in column xk. Let’s denote
pk = (dx)d. If pk < 0, we draw the lower pixel. Otherwise, we draw the upper one. Notice
that 2(dy) + 2(dx)b − (dx) will never change no matter in which column we are. Therefore let
C = 2(dy) + 2(dx)b− (dx), we have:

pk = 2(dy)xk − 2(dx)yk + C

Now suppose we already determine which pixel to draw in column xk +1 using pk. As we are moving
to column xk + 2, we will need the value of pk+1. Using the same process we have used to derive pk,
we derive pk+1:

pk+1 = 2(dy)xk+1 − 2(dx)yk+1 + C

where (xk+1, yk+1) is the pixel we colored using pk. Let’s subtract pk from pk+1 to get rid of the
constant term C:

pk+1 − pk = 2(dy)(xk+1 − xk)− 2(dx)(yk+1 − yk)

where we know xk+1 − xk = 1 since we are simply moving from one column to the next, therefore:

pk+1 − pk = 2(dy)− 2(dx)(yk+1 − yk)

Observe that the value of (yk+1 − yk) is either 0 or 1, because yk+1 is the row which we color in
column xk + 1 using pk. That is if pk < 0, we have colored the pixel in the row yk. If pk ≥ 0, we
have colored the pixel in the row yk + 1. Therefore, if pk < 0, then:

pk+1 − pk = 2(dy)

7

Figure 9: Lines that look ragged and discontinuous due to information loss

Otherwise, then:
Pk+1 − pk = 2(dy)− 2(dx)

This implies that, given the truth value about whether pk is larger than 0, we can determine which
pixel to color in column xk + 1, and at the same time we can determine pk+1. In the process
of determining pixels and finding criterion for the next column, only integer operations are used
because the end points have to have integer coordinates and the pi’s we used are always integers if
the first pi is an integer. The only thing left undone is to find the value of the first pi. This is the
value of the criterion for coloring the second column covered by the line of interest. We have already
colored the pixel in the first column by directly using the coordinates of the starting point. Observe
that if dy/dx > 1/2, then we color the upper pixel. Otherwise we color the lower pixel. This if-then
statement can be re-written using only integer operations as follows:

p0 = 2(dy)− (dx)

where if p0 > 0, we color the the upper pixel. Otherwise we color the lower pixel. Therefore the
checking procedure for p0 is the same as other pi’s.

6 Anti-aliasing

So far, we are capable of drawing a line on screen. However, we have not addressed the fact that
some non-trivial information has been lost in the process of line generation. For example, looking
at the Figure 9, we see that the line we draw looks ragged and discontinuous. Figure 10 enlarges
portion of Figure 9 to show the effect.

The fact that some information is lost in the process of mapping something continuous in nature
to a discrete space is called aliasing. This effect occurs when using digital medium to record music
and using digital camera to take photos. In most cases the effect will not be noticeable since modern
techniques use very short time interval to record sound and a large amount of pixels to encode
images. However, in the case of line drawing, the problem of aliasing stands out and we have to do
something to compensate for the lost information. The process of doing this is called anti-aliasing.

8

Figure 10: Enlarged portion of Figure 9. Notice that the line is ragged and discontinuous.

One way of reducing the raggedness of the line segment we draw is to color pixels in different
grey scales. Notice in our original criterion of drawing line segments, for each column, only one pixel
is drawn. However, the line may pass more than one pixel in a column. And even if the line passes
only one pixel in a column, it may not go though the center of a pixel. In Figure 1, even though
the line passes the pixel in row r and column c+ 1, we did not color it. It would be nice if we can
color different pixels with different opacity value or gray scale according to how closely a pixel is
related to the line of interest. One easy way of determining the opacity value is to find out how
far the center of a pixel is from the line segment and color the pixel with opacity value inversely
proportional to the distance. This algorithm is especially simple to implement in DDA because we
always keep a value of h in each column to measure the distance from one pixel to the line segment.
A slight modification in DDA will enable us to make the line appear smoother and nicer to our eyes.

Figure 11 is the line drawn with anti-aliasing. Figure 12 is an enlarged portion of 11. One thing
we should be careful about is that the opacity values in the pixels of one column should add up to
1. If not, the line may appear thicker or thinner than it should be.

More complicated algorithm can be used but more complication will not slow down our line
generation algorithm so much. A simple scheme of calculating the grey scale values and storing
them in a table beforehand can guarantee the order of computation will only be increased by adding
a constant term which is essentially ignorable. We will not go into more complicated line anti-aliasing
algorithm here. However, because of using integer operations exclusively, implementing anti-aliasing
for Bresenham’s algorithm is more involved than DDA. A common method of adding anti-aliasing
to a line drawn using Bresenham’s algorithm is Xiaolin Wu’s algorithm. It is described in the paper
An Efficient Antialiasing Technique [Wu91] published in Computer Graphics.

7 Display File

Until now, we have been able to draw straight lines on a screen. Later on we may wish to add more
functions for drawing a circle, a polygon or even some 3D shapes. For the sake of good programming
practice, we may want to encapsulate all the drawing functions into a single object. We will call
the object “drawer”. To specify the various instructions we may ask the drawer object to do, we
will need a display file. It will hold a list of instructions which will then be interpreted by another
abstract class screen to draw on an actual physical screen. The purpose of a screen class is to hide

9

Figure 11: Lines drawn with anti-aliasing

Figure 12: Enlarged portion of Figure 11

10

away the messy details for a specific type of screen. It also offers a common interface for different
types of screens, so our drawing commands in display file will be transportable across different kinds
of hardware. The only assumption made about the three classes is that we restrict ourselves to draw
on a rectangular screen and the pixels are represented as a grid.

In order to make the display file more convenient to use, we maintain two pointers to indicate the
current drawing pen position. One point is for the x-coordinate. The other is for the y-coordinate.
It is implemented by having three arrays. The first array will hold the integers called opcode
representing the types of commands. Currently we have two commands: a move command to move
the pen without leaving a trace with opcode 1 and a line drawing command with opcode 2 to move
the pen while drawing line on its way to the end points. The second array will hold the x-coordinate
of the point to which we wish to draw a line or only move the pen. The third array holds the
y-coordinate of the same point. The indices are also shown on the left most column. An index i is
used to identify the i-th command in our display file. A sample display file is shown below assuming
the initial pen position is (0, 0).

index opcode x y interpretation
0 1 30 25 move the pen to position (30, 25)
1 2 40 40 draw a line segment between (30, 25) and (40, 40)
2 2 100 20 draw a line segment between (40, 40) and (100, 20)
3 2 30 25 draw a line segment between (100, 20) and (30, 25)
4 1 10 0 move the pen to position (10, 0)

Notice that we essentially draw a triangle with the command above and eventually the pen stops at
position (10, 0).

Despite the fact that we have display file as a more concise specification about what we want
to draw on a screen, we should not try to write to the display file directly. Entering numbers is
error-prone and we have to stick with a particular implementation of display file. Instead of using
three arrays, we may also implement display file as a single array containing a list of command
objects representing individual commands. In other situations, we may also find linked list may be
a better option than a non-expandable array. In other words, we need to encapsulate what we can
do with display file and expose the functions as an abstract programming interface to the user. We
define four different functions for our API (abstract programming interface):

draw line abs(x1, y1) draw line rel(dx, dy)
move pen abs(x1, y1) move pen rel(dx, dy)

Here, we use abs and rel as the abbreviations for absolute and relative. When we ask the display
file to carry out an absolute command, we ask the drawer to draw or move from the current pen
position to (x1, y1). When we issue a relative command, we ask the drawer to draw or move from
current pen position (x0, y0) to the position (x0 + dx, y0 + dy). Although relative and absolute
commands are specified differently, they can implemented in the same way. Let current pen position
be (x0, y0), implementing relative commands is the same as implementing the absolute commands
with arguments (x0 + dx, y0 + dy). After converting every relative command to be absolute, we can
enter all commands directly into display file regardless of being relative or absolute.

In later sections, we will add more commands to enable us to draw more shapes on screen.

8 Polygon Representation

One of the straightforward applications of line drawing algorithms is to draw a polygon on screen as
we have done in the sample display file table. The only thing we need to do is to draw line segments
one after another connected with each other. Our abstract representation of a pen in display file is
especially easy to use in this situation since we do not have to keep track of where one side of the
polygon ends to in order to draw another. However, before we start, we have think carefully about
how we are going to represent a polygon abstractly. Some graphic systems use a set of trapezoids
to represent a polygon since any polygon can be broken into trapezoids. In those systems, drawing

11

A

D

C

B

Figure 13: The shape drawn above has four five vertices and can be broken into two triangles but
only A, B, C and D are specified. The vertex at the center where line segments AB and CD cross
is not specified and its coordinates remain unknown

a polygon simply becomes drawing a set of trapezoids and only need to implement the procedure
for drawing a trapezoid. This implementation is doable but it forces the user to break a polygon
into trapezoids beforehand. It leaves the hard work and messy details to the user. Therefore it
is error-prone to use and polygon drawing could be made easier and more flexible. An intuitive
representation of polygon to replace it would be a set of points representing vertices of the polygon
of interest. It is then natural to implement drawing polygon as connecting the vertices in order. The
user only has to specify a set of points in the correct order that he/she wants to use as vertices.

Representing a polygon as a set of points is simple but there is a way that a user could misuse
it. When representing a polygon as trapezoids, we can draw the polygon as convex or concave and
we know explicitly where the sides and vertices are. However, when drawing with a set of points,
we may draw sides crossing each other. In this case, the crossing point of two sides should a vertex
but we have no information about it. This is shown in Figure 13. We may either rely on the user
to check the vertices beforehand to make sure no lines are crossed but introducing difficulties to
the user is the problem we want to avoid at the first place. To allow more flexibility and keep the
drawing of a polygon simple to the user, we will allow lines to cross. Furthermore, in some cases it
would be even beneficial to allow line crossing. For example, look at Figure 14, we can draw a star
without specify all of its 10 vertices even though it is a 10-gon.

9 Polygon Filling

Once we draw a polygon on screen, we may wish to fill it. Since we have written the procedure for
drawing line segments, scan line algorithm will be the most convenient to implement. Furthermore,
most display devices nowadays have a scan line implemented in hardware one way or another.
Therefore, scan line algorithm can be also very efficient. As the name of the algorithm implies, there
is a scan line which steps through each row of pixels on screen from top to bottom. When the scan
line stops at a certain row, it first determines the points where the scan line intersects the polygon
boundaries. For the coordinates of those points, it then decides which line segments to draw in order
to fill the polygon. Figure 15 illustrates this process.

In Figure 15, we have a convex pentagon and one scan line shown. The scan line stop at y = 3.
The thick line segments between the intersecting points are the line segments we need to draw to
fill the pentagon.

Notice that our scan line does not have to step through every single row on a screen. For a
polygon with several vertices, if we find the largest y-coordinate of those vertices, we essentially
find the y-coordinate the highest point. The same applies to the lowest point. Let’s denote the two

12

A

D

C

B

E

Figure 14: Drawing a stare is made easier when we are allowed to draw lines crossing one another.
To draw the shape shown above, we only need to specify 5 points as if it is a pentagon instead of 10.

y = 3

Figure 15: Use scan line algorithm to fill a polygon. We first find the intersections of scan line and
the sides. Then we will draw horizontal line segments between each pair of intersection points using
the existing line drawing function.

13

P A

Figure 16: Since the the horizontal AP has 3 intersection points with the sides of polygon, P is an
interior point.

coordinates ymax and ymin. Then for our scan line y = k where k is an integer determining which
row our scan line is at, it only needs to move within the range where ymin ≤ k ≤ ymax.

There is still one problem that remains. We do not know which line segments we have to choose
to draw. Obviously, the line segments within a polygon have the intersecting points as end points but
which line segment is within a polygon? This is essentially the same to ask how we can determine if
a given point is inside a polygon. This question may be easy for humans to answer by only looking
at a picture but it is not so obvious for a computer to work it out. We are going to look at two
different algorithms for determining if a point is inside a polygon in the following two sections.

9.1 Even-odd rule/method

The first algorithm we are going to consider is the even-odd method. This algorithm is intuitive
and easy to understand. Suppose we have a point P we are interested in determining if it is inside
a polygon. First, let’s find a point A outside a polygon. An outside point is simple to find. We only
need the y-coordinate of A to be larger than ymax or smaller than ymin. Alternatively, we can also
have the x-coordinate of A to be larger than xmax or smaller xmin (where xmax is the largest vertex
x-coordinate). After selecting appropriate coordinates, we are sure A is outside the polygon.

Now let’s connect AP . From Figure 16, we count the number of intersections of AP and row
boundaries. If AP happens to pass a vertex, we count it as 2 intersections because a vertex is shared
by two different boundaries. Suppose the total number of intersections is an integer n. If n is even,
P is outside the polygon. Otherwise, P is inside.

We can also think about even-odd method intuitively. Imagine the polygon of interest is a box
and we enter it from an outside point A. If we enter and stay, we cross the wall once. If we enter
and leave, we are back to outside and we cross the wall twice. Any even number of crossing the wall
will make us outside. Any odd number of crossing will leave us inside. A special case is when we
never enter the box. The count of crossings is then 0 which is even. It is still true if we have an
even number of crossings, then we stay outside.

The next step is to apply this method to polygon filling. Consider Figure 16. The scan line
essentially serves the same as AP since it always starts from a point outside. If we have intersection
points P1, P2, P3, P4, P5, P6 in ascending order according to their x-coordinate, we are going to draw
line segments P1P2, P3P4, P5P6. It is the same as if we have a pen drawing along the scan line. The
pen starts with not touching the paper, whenever it encounters an intersection point, it switches its
state. That is, it changes from touching the paper to not touching and vice versa.

9.2 Winding Number Method

The even-odd method is nice and simple but it imposes a problem. When we introduce the spec-
ification of a polygon, we want to allow polygon sides to cross each other. It makes it convenient

14

P A

Figure 17: This polygon has five vertices. Although AP has an even number of intersection points
with polygon sides, point P is inside the polygon but even-odd method will give us wrong result by
considering it exterior.

d = 1

d = −1

d = 1 d = −1

d = −1

scan

A

P

Figure 18: The direction number for each side is marked at it ending point. The thicker sides have
direction numbers equal to 1. The polygon is drawn starting from point A. The point P will be
considered as interior since the sum of direction numbers for this point is −2.

when drawing a shape like a star. However, the even-odd method for polygon filling goes awry when
dealing with an unconventional polygon with sides crossing. Consider Figure 17. The point P inside
a polygon will be considered outside though it is inside. the winding number method solves this
problem. One way to visualize winding number method is by imagining there is a pin fixed at the
point of interest. There is a rubber band with one end fixed on the pin and the other end going
along the sides of the polygon. The rubber band goes from one vertex to another in the same order
we draw the outline of the polygon. If the point of interest is an interior point, then after the rubber
band goes back to where it started, it will tie around the pin at least once. If the point is outside
the polygon, then it will tie around the pin. The number of tying around the pin is called winding
number, denoted as w. Therefore, if w = 0, then the point of interest is outside. Otherwise, it is
inside.

An alternative way of viewing this is treating a rubber band as a rotating vector about the point
of interest.[Har87] Then winding number indicates how many whole circles, or multiples of 2π the
vector has swept on its way going along polygon sides. The point is outside a polygon if the angle
swept by the vector is less than 2π. Otherwise, it is inside.

For computer to use this method, we introduce direction numbers as an intermediate step. As
shown in Figure 18, there is a horizontal line as reference. If the direction we draw a polygon side
from one vertex to another is from bottom to top, then we assign 1 as the direction number for

15

this side. Otherwise we assign −1. When a side is horizontal, the choice of direction number is
arbitrary. To be consistent, we choose 1 as the direction number when the horizontal side is going
to the left, and −1 when it is going to the right. Then winding number method can be simplified.
The horizontal reference line connects the point of interest to some exterior point. We add up all
the direction numbers of sides which are crossed by the horizontal line. The sum will be the winding
number for the point of interest. This process involving utilizing a horizontal line is consistent with
even-odd method. The horizontal line will become the scan line in scan-line algorithm when we
actually implement filling polygon with even-odd or winding number method.

9.3 Use Even-odd/Winding Number Method

Using either the even-odd rule or the winding number rule to fill a polygon can be tricky. First,
a naive approach of checking each pixel on screen to see if it is inside a polygon is unnecessarily
memory expensive. One easy way to be more efficient is to only check the points within certain
boundaries. For a pixel on screen with coordinates (x, y), we know it is definitely outside a polygon
if x /∈ [xmin, xmax] or y /∈ [ymin, ymax] where xmin, ymin, xmax and ymax are the largest x or y
coordinates of the vertices of the polygon of interest respectively. That is, we will only check the
pixels within a rectangle which is only large enough to contain the polygon of interest.[Har87]

Moreover, since the sides of a polygon are the boundaries separating the inside and outside of a
polygon, the interior of a polygon can be represented by a set of line segments with ending points
on the polygon sides. This will simplify our task of filling a polygon into only drawing certain line
segments, which we are already able to do. The algorithm to fill a polygon in this way is called scan
line algorithm.

A scan line, partly shown in Figure 18, is an abstract horizontal or vertical line running across
the whole screen. Given a horizontal scan line, a straightforward way to represent it is an integer n,
denoting the n-th row of pixels which the scan line runs through. Such a scan line will only need to
run through the rows from ymax to ymin if it is going down from the top. Namely the integer n will
only need to be decremented each time we enter a new row of pixels within the range [ymin, ymax].
For a certain value of n along the way, algorithms using basic geometry will be used to determine
the x-coordinates of the pixels at which the scan line intersects the polygon sides. We then sort
these x-coordinates from least to greatest. Each pair of x-coordinates define a line segment. We
have to decide which line segments formed by the x-coordinates are inside the polygon of interest
and this task is left to the even-odd rule or the winding number rule.

For the even-odd number rule, the algorithm is simple. Since a scan line is an abstract line
infinite at both ends and a polygon is bounded, if we draw it with a pen from left to right, it will
always start from outside a polygon even if part of the polygon is outside the screen. Suppose we
have a Boolean variable k which we use to determine which line segments to be treated as inside
a polygon and therefore should be drawn and which line segments are left blank. The variable k
will be initialized to be false since we start outside a polygon. Whenever we encounter a polygon
side, we will negate k, namely change it from true to false or from false to true depending on its
previous value. In this way, we can collect the pairs of x-coordinates which we should use to draw
line segments.

Using the winding number method is slightly more complicated. First, as introduced above, we
have to determine direction numbers for the polygon sides first to use this method. Next, instead
of keeping a Boolean variable, we will use a variable g storing an integer. The variable g will be
initialized to be 0, as outside a polygon. Whenever we encounter a polygon side, we add the direction
number of this side to g. If g is not 0, the pixels to the right of intersection point should be colored
until g goes back to 0. The line segments starting from the first x-coordinate with g being nonzero
and ending at the first x-coordinate with g being back to zero will be drawn to fill the polygon.

9.4 Further Reading

Further discussion about winding numbers and inside tests can be found in [New80]. Although we
represent polygons as a set of vertices, alternative approaches for representation can be found in

16

[Bur77] and [Fra83]. We also mentioned we can represent a polygon by dividing it into trapezoids
or triangles. This technique is described in [Fou84] and [Gar78]

10 Transformation

Transformation is process of mapping a shape to another according to a well-defined rule. Transfor-
mations such as rotating and scaling are common and we may want accomplish them in our graphics
program. For our program to be reusable, we want to be able to apply the same transformation to
different shapes using the same sequence of code. Notice that any transformation of a shape can be
represented as mapping a point to a different point. Stretching a square to be twice as big will be
as simple as mapping the coordinates of a vertex (x, y) to be (2x, 2y). Therefore, a universal way to
transform different shapes is transforming the critical points, namely the points or other parameters
that define the shape of interest. In the case of a line segment, the critical points are its ending
points. For a polygon, they are the vertices.

Furthermore, it will be more appealing if we can apply many different transformations to the same
shape while keeping our code running efficiently. We may also want our intended transformations
to be stored and applied all at once at the end therefore separating concerns. Another interesting
question is whether there is a way we can build new complicated transformations from simpler ones.
An intuitive way will be writing functions for different transformations and store the sequence of
labels of transformations we want to apply in an array. When we are ready to apply them, we check
the label in order and invoke the corresponding function. This implementation is doable but it is
not efficient since the array consumes lots of memory when complicated transformation is applied.
Since graphics is a frequent task, we need a more elegant solution. A universal way of representing
a transformation is necessary. One of the common representations is matrix, which as we will see
shortly, is simple to implement and efficient for constructing complicated transformations.

10.1 Scaling Transformation

Scaling is the process of stretching or shrinking a shape.[Har87] Suppose we have a critical point
(such as the ending point of a line segment or a vertex of a polygon) of the original shape has
coordinates (x1, y1) and the corresponding point in the transformed shape has coordinates (x2, y2).
Then after scaling transformation is done with a horizontal factor k and a vertical factor g, the two
pairs of coordinates have the following relationship:

x2 = kx1 (1)

y2 = gy1 (2)

If k = 2 and g = 2, it is the same as making the original shape twice as large. If k = 0.2 and g = 2,
it is the same as squeezing the shape horizontally to 1/5 of its original horizontal size and stretching
it vertically to be twice as tall. An example is shown in Figure 19 with k = 0.2 and g = 2. To
represent the relationship in matrix, we have the following:[

k 0
0 g

]
We use matrix multiplication to apply the transformation represented by this matrix:

[
x1 y1

] [k 0
0 g

]
=
[
kx1 gy1

]
The matrix on the right side of the equation is the representation of the same relationship shown in
Equations 1 and 2.[Har87]

17

Figure 19: The figure on the left is squeezed horizontally to 1/5 of its original size. It is also stretched
vertically to be twice as big. The figure on the left is the shape after applying the scaling factors
k = 0.2 and g = 2.

Although we only have defined only one type of transformation right now, we can still see how
we can use matrices to construct more complicated transformation out of simpler ones. Suppose we
want to do the following two scaling transformations:

k1 = 0.5

g1 = 1

and
k2 = 2

g2 = 1

Imagine applying the two transformations in order. We first stretch the shape horizontally to be
twice as wide. Second, we squeeze it horizontally to be only half as wide. At the end, we will
get back to the original shape we start with. These two transformations are not by themselves
very interesting because at the end nothing is changed. Nevertheless, the point is to demonstrate
that we can use the same memory space enough for only one transformation to store two or more
transformations even though the amount of information needed to be stored is more.

Writing the two transformations as matrices gives us:[
0.5 0
0 1

]
[
2 0
0 1

]
We combine them using matrix multiplication:[

0.5 0
0 1

] [
2 0
0 1

]
=

[
1 0
0 1

]
We discard the two matrices we start with after we get the matrix on the right side of the equation.
However, the information of the two matrices is retained because now they are encoded into the
matrix we obtain at the end. Applying the original two matrices is as simple as applying the single
matrix we have at the end.[Har87]

Obviously this process is not restricted to only two matrices. No matter how many transfor-
mations we are given, the only task we need to do is to multiply the next matrix to the previous
result. This not only enable us to use a constant amount of space in memory, but also makes the
running time for applying transformations at the end constant while at the same time allowing us to

18

dynamically adding any transformation as we like as long as the transformation can be represented
as a matrix.

In the following subsections, we are going to survey other common transformations and illustrate
them with examples. Also, we are going to introduce a slightly different way of using matrices to
represent transformations.

10.2 Rotation

If a point is represented in polar coordinates (r, θ), we only need to add a constant to θ to rotate
it about the origin. However, since a screen is represented by a grid of pixels, we have to transfer
Cartesian coordinates to polar coordinates, rotate, and transfer back. Luckily, basic geometry and
trigonometry have taught us how to do so.

Consider the point (1, 0). If we rotate it counterclockwise on the unit circle by an angle θ, it
becomes (cos θ, sin θ). That is, if we have a matrix[

a b
c d

]
to represent the transformation, we will have:

[
1 0

] [a b
c d

]
=
[
a b

]
which is the transformed coordinates [Har87]. Therefore, we get:

a = cos θ

b = sin θ

If we rotate the point (0, 1) counterclockwise by an angle θ, it becomes (− sin θ, cos θ) [Har87].
Applying the procedure described above, we may conclude:

c = − sin θ

d = cos θ

Since every point on a plane can be broken down into the form u(1, 0) + v(0, 1), we are able to
construct the rotation matrix to rotate a point counterclockwise about origin as [Har87]:[

cos θ sin θ
− sin θ cos θ

]
To construct a matrix to rotate clockwise is as simple as replacing θ with −θ. However, to rotate
about an arbitrary point instead of the origin requires more work to be done. Namely we need to
be able to perform translation.

10.3 Translation

So far we have used 2×2 matrix as our representation of transformation. However, 2×2 matrix does
not serve the purpose of translation well. We can use a separate routine to deal with translation since
it only involves adding constant factors to the coordinates, but doing this will violate our principle
to represent different transformations in a similar fashion and be able to concatenate them to form
more complicated transformations. In other words, we want to stay homogeneous across different
transformations. To account for translation, we use 3×3 matrix as our homogeneous representation
instead of 2× 2 matrix. We are going to see that 3× 3 matrix functions in the same way with the
following example.

19

Suppose we want to scale a point (x, y) with factors sx and sy. With 2× 2 matrix, we have:

[
x y

] [sx 0
0 sy

]
=
[
sxx syy

]
Now we augment (x, y) with a dummy coordinate w. We call the new form of coordinates (x, y, w)
homogeneous coordinates [Har87]. By applying a 3× 3 matrix, we have:

[
x y w

] sx 0 0
0 sy 0
0 0 1

 =
[
sxxw syyw w

]
To get the same result as before, we simply set w to be 1. We then introduce the matrix used for
translation:  1 0 0

0 1 0
tx ty 1


Where tx and ty are the horizontal and vertical distances we want to translate. For the point (x, y),
applying the matrix above we obtain (x+ tx, y + ty) which is the desired result for translation.

10.4 Rotation about an Arbitrary Point

Rotation about an arbitrary point is actually three transformations in sequence [Har87]. Suppose we
rotate about the point (xc, yc) and the point to be rotated is (x, y). We first translate (x, y) in the
direction (−xc,−yc). Second, we rotate about the origin. Third, we translate back by translating
with factors (xc, yc). For the user’s convenience, we want to construct a single matrix. This is as easy
as doing some simple matrix multiplication operations since we have the necessary transformations
all encoded in 3× 3 square matrix. 1 0 0

0 1 0
−xc −yc 1

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 1 0 0
0 1 0
xc yc 1



=

 cos θ sin θ 0
− sin θ cos θ 0

−xc cos θ + yc sin θ + xc −xc sin θ − yc cos θ + yc 1


Again, this is for counterclockwise rotation, but how to rotate clockwise is as simple as only replacing
θ with −θ.

10.5 Reflection

Reflection is another common task we want to accomplish. Matrices below are the representations
for different reflections. For simplicity we have omitted the unused part of our homogeneous 3 × 3
matrix representations and only present them as 2 × 2 matrices. A reader can re-construct the
homogeneous representation by simply adding the omitted part.

Reflection about the y axis: [
−1 0
0 1

]
Reflection about the x axis: [

1 0
0 −1

]
Reflection about the origin: [

−1 0
0 −1

]

20

Figure 20: The square is sheared by changing the y coordinates. The x coordinate of each point
remains unchanged [Tuta].

Reflection about y = x: [
0 1
1 0

]
Reflection about y = −x: [

0 −1
−1 0

]

10.6 Shear

The shear transformations cause the image to slant. The y shear preserves all the x-coordinate
values but shifts the y value[Har87]. To see the effect of this, let’s look at Figure 20. The matrices
for shearing are presented below. The variables a and b represents the shear factor.

Matrix for y shear: [
1 a
0 1

]
Matrix for x shear: [

1 0
b 1

]
Again for simplicity, we have only presented 2× 2 matrices.

10.7 Inverse Transformation

We have seen how to apply many different types of common transformations. However, sometimes it
is also necessary to revert the effect of a transformation. This special type of transformation is called
inverse transformation and it is accomplished by using inverse matrix. Suppose we have matrix A
and we wish to revert its effect, we can multiply A−1 to A since A is defined to be a square matrix
and the definition of inverse matrix give us:

AA−1 = I

where I is the identity matrix. It can be easily verified that when applied the identity matrix, the
coordinates are not changed as if no transformation has been applied. However, reverting the effect
of matrix A is not the same as applying the identity matrix. They are only the same in the special
case when A−1 is added right after A. Otherwise, due to fact:

AXA−1 6= X

it is different from applying the identity matrix.
One of the applications of inverse transformation is to construct a complicated transformation out

of the simple ones we already know. For example, in the previous subsection introducing rotation

21

about an arbitrary point, we first translate the coordinates, then rotate about origin and finally
translate back. The third matrix for translating back is actually the inverse matrix of the first one.
We are going to see more examples like this in the section for drawing 3D shapes.

10.8 Further Reading

Although using matrix to represent transformations is handy and better than a naive approach we
proposed in the beginning, it is definitely not the only way to transform a shape. Other techniques
may be found in [Bra80].

11 Re-visting Display File

So far we have introduced the ways for drawing a line segment, drawing and filling a polygon,
and applying transformations. We may want to put together all the procedures into a single piece
of software while following software engineering principles. We have used display file to store the
commands for drawing line segments and have the drawer object to execute them. The routines for
drawing polygons are similar to those for line segments. There will be absolute and relative versions
of routines for drawing polygons. However, instead of passing coordinates of vertices to the routines,
we will have the user store the coordinates in two arrays and then pass the arrays. One of the arrays
will be storing the x-coordinates of all vertices. The other will store the y-coordinates. The lengths
of both arrays should be the same as the number of sides. And if the two arrays have different
lengths, an error will be thrown. Furthermore, we may have a routine to automatically find out the
number of sides from the length of either array but we may also have the user to specify it. Again,
if the number of sides specified by user does not match with either array, an error should be thrown.

When the routine for drawing polygon is called, it is not clear about what data it should put
into the display file. Remember in the case of line segments, we have to tell the display file the x,
y coordinates and the opcode. Since we have not used any opcode larger than 2 and the minimum
valid number of sides of a polygon is 3, we will use any opcode larger than 3 to represent the number
of sides. If we want to add commands for other shapes such as a circle or a curve, we may use
negative numbers as opcodes. As for the values of x and y, we will use them to store the coordinates
of the first vertex. This command will be called polygon command thereafter.

However, after doing this, we run out of space for storing necessary information for drawing a
polygon. If the polgyon has n vertices, we have no place to store the coordinates for the remaining
n−1 vertices. Also, we have no way to have the display file to tell the drawer object to fill a polygon or
leave it unfilled. For the first problem, we simply add a sequence of line segment drawing commands
to draw polygon sides following the polygon command. In this way, the polygon command will be
interpreted as a move command to move the pen to the position of the first vertex. Also, the opcode
of the polygon command will be used to determine how many line segment drawing commands there
are for the polygon. For a polygon with n vertices, we need to draw n sides. Therefore, we put n
line segment drawing commands in order following the polygon command. The x and y slots of the
first n−1 line segment drawing commands will store the corresponding coordinates of the remaining
n− 1 vertices. The slots of the last command will store the coordinates of the first vertex as we do
not want to leave a gap. When combined, the n+ 1 new commands introduced so far will enable us
to draw the outline of a polygon on screen.

As for letting the user choose whether a polygon should be filled, instead of inventing a new
command, we will simply use a Boolean variable to indicate the choice. Also, we will include
another set of variables to indicate the intensity, the color and other parameters with which we use
to fill the polygon. If the task of graphics is implemented in hardware, those variables will instead
become registers.

We may wish to add the functionality of transformation now but any implementation we come
up with may not be ideal. We may wish to apply different transformations to different shapes.
Remember there is only one display file in memory and we have no way to distinguish one shape
from another. Therefore for any transformation we apply, it is applied to the whole screen. Moreover,
the Boolean variable we introduced above to indicate if a polygon should be filled will not enable

22

us to fill some polygons while leaving the others blank. To be able to do so also requires a way to
distinguish different shapes. We will be dividing the display file into different segments and the way
of dividing will be introduced in the next section.

12 Segment

Segments are extensively used in graphics. Consider the animations in a video game. An object
may be moving from right to left while the background remains static. A sequence of translation
matrices will be applied to the object alone repeatedly to make it look like moving. In the display
file, we will have a segment for this object while having another for the background. The program
should then only apply transformations to the segment of the object. Since display file is supposed
to only contain drawing instructions, to separate concerns, we will implement segments and store
the necessary information in a separate table called segment table. The table will be a fixed set of
arrays. The indices of the arrays will be the names for segments. One array called “start” should
store the index which indicates where a segment starts in a display file. Another array called “offset”
will store the number of instructions in display file that belong to the segment. Suppose for segment
i, the integers stored in the start and the offset arrays are a and k. Then all of the instructions with
indices from a to a+ k − 1 will belong to segment i.

Other arrays will store information for transformation and filling parameters. For example, one
array will store the angles for rotation transformation and another pair of arrays will store the two
scaling factors. However, some operating systems or graphic cards may not automatically initialize
the slots of arrays with 0’s. If a certain transformation is not specified for a segment, random junk
may trick the program into thinking there is a transformation to apply. The way to deal with this
is to initialize the slots with some default values but we should be careful not to make them all 0’s
since different transformations require different default values. For rotation, the default value will
be 0 and for scaling, the value will be 1.

Part of a segment table is shown below

index start offset y tx ty theta sx sy
0 0 30 25 0 0 0 1 1
1 30 4 40 1 14 0 1 1
2 34 10 20 0 0 π/2 2 2

We have three segments in the segment table above. The transformation factors for the first
segment forms an identity matrix. Therefore it is not transformed and may serve as the background.
The second segment will be translated by 1 pixel to the right and 14 pixels to the top. The third
will be rotated counterclockwise by an angle π/2 and then made twice as large as before. However,
the third segment poses a problem. If the user wants a segment to be transformed in multiple ways,
the order of applying transformation is ambiguous. In the case of the third segment, we simply
assume there is a fixed order of transformations to be applied, but this requirement severely limits
the number of the user’s choices. To solve this, we may have the segment table to directly store
the matrices to be applied, but for the simplicity of implementation, we are only going to use the
simpler but less useful version of segment table.

We should also add routines for the user to use our segment table. Those routines will include
segment creation, retrieval, modification and deletion as well as routines for storing transformation
and filling parameters. Since those routines are simple to implement, we will not include the details
here. Although not required, we can also allow the user to specify nested segments. This can be
implemented by simply relaxing the constraints for the values of start and offset of a segment.

13 Windowing and Clipping

Windowing and Clipping are common tasks in graphics programming. Windowing is the procedure
of putting arbitrary boundaries on the figure of interest. We then select part of the figure and
re-locate it. Clipping compliments windowing. After part of a figure is selected, parts of the figure

23

outside the window should be removed. This will reduce the computing time and resources required
to render the figure.

13.1 Windowing

Before diving into the specifics of windowing, there are two concepts essential to this task. Fist,
an object model is the model with which we model the figure of interest. For example, we may
specify a figure in object model with units such as centimeters, kilometers or even light years. A
view model is the coordinate system we use on an actual screen or frame buffer where the units such
as centimeters do not make sense. The only unit we are going to use in a view model is the pixel. If
we normalize the width and length of a screen such that the length of a line segment is represented
as the ratio of width or length, it is then possible to specify the coordinates of a point with numbers
smaller than 1. For example, on a screen 200-pixels wide and 100-pixels high, using pixel as the unit,
if the point P has coordinates (50, 50), P can be represented in a normalized coordinate system as
(0.25, 0.5).

A window is a selected region of the object model of a figure. For example, if we want to draw
a house on screen, we may select the front door of the house as our window. For simplicity, we will
only discuss window of a rectangular shape and currently we are only interested in having 2D figures
in the object model. Also, since we want our implemented software to remain general, figure in the
object model will also be specified with normalized coordinates. An actual application to a specific
area may then be required to have a routine to convert the real-world units such as centimeters and
light years to the normalized coordinates.

A viewport is a selected region of the view model. It determines where and how we want to
display the selected part of a figure in object model. Again, for simplicity, we will only deal with
rectangular viewport. Therefore, our task for windowing can be divided into three parts. First, we
have the user select the desired window on the figure. Second, we have the user specify the desired
viewport. Third, we put the selected part in the viewport. The first two steps for windowing are
simple to implement. We only need to write routines to store the window and viewport boundaries.
We will use symbols wr, wl, wt, wb to represent the right, left, top and bottom boundaries of the
window and vr, vl, vt, vb for the boundaries of viewport respectively. The third step of windowing
might seem a little daunting and complicated but in fact, it is really only a transformation in disguise.

13.2 Windowing Transformation

Windowing transformation is the combination of a sequence of simpler transformations. We are
going to use translation and scaling to achieve the construction. First, we move the lower-left corner
of window to the origin. Second, we move it to the corresponding viewport corner location. When
the window is at the origin, we perform some necessary scaling. The reason to do the scaling at
origin is that we can avoid disturbing the corner’s position. Therefore, we will have three matrices
and we are going to combine them using matrix multiplication. 1 0 0

0 1 0
−wl −wb 1

 vr−vl
wr−wl

0 0

0 vt−vb
wt−wb

0

0 0 1

1 0 0
0 1 0
vl vb 1



=

 vr−vl
wr−wl

0 0

0 vt−vb
wt−wb

0

vl − wl
vr−vl
wr−wl

vb − wb
vt−vb
wt−wb

1


13.3 Clipping

Without clipping to remove the parts that a user is not interested in, our routine for windowing is
only scaling and translating transformations combined. Clipping is what will make the figure look
like that it has been selected and the user is looking through a real window. First, we will explore

24

Figure 21: The positive bit represents the state of a vertex being outside a boundary. The negative
bit represents that in reference to a particular boundary, the vertex in question is considered inside
[Wha].

a simple yet efficient algorithm for clipping line segments. Later, another algorithm for clipping
polygon will be introduced.

13.3.1 The Cohen-Sutherland Outcode Line Clipping Algorithm

This algorithm was first developed by Danny Cohen and Ivan Sutherland in 1967. Although the
algorithm was introduced in an early era of computer graphics, its simplicity and efficiency allow it
to be still widely used and become the foundations of other more efficient line-clipping algorithms.
Information about the other algorithms that improve upon Cohen-Sutherland Outcode Algorithm
can be found in the Further Reading Section. The Outcode Algorithm makes use of a type of
information storage unit called outcode. Outcode is a data structure holding four bits. Each line
segment will have two outcodes. One end point of a line segment will correspond to one outcode.
For a line segment l with end points (x1, y1) and (x2, y2). The end points have outcodes c1 and c2
respectively. If y1 > wt, then the first bit of the outcode c1 is assigned value 1. Otherwise the first
bit is assigned 0. If y1 < wb, then the second bit is assigned 1. Otherwise it is assigned 0. The
process goes on for x1 testing against wl and wr. The third bit corresponds to wr and the fourth bit
is for wl. That is, if the end point is outside a boundary, the corresponding bit for that boundary is
assigned 1 and otherwise it is assigned 0. We repeat the same process with end points (x2, y2) and
its outcode c1. At the end, we will have a pair of outcodes for a line segment. If both line segments
are 0000, then the line segment lies inside the window. If the line segment is not inside, we take a
logical “AND” of the two outcodes. If the result is nonzero, the segment lies completely outside,
since at least one bit position in the two outcodes have both 1. That is, both of the end points lie
at the outside of a boundary line. If the result of “AND” operation is zero, we determine which side
has been crossed, find the point of intersection and repeat the process for clipping until we have a
clipped segment which lies inside the window. In this algorithm, we essentially divide the plane into
new regions. This is illustrated in Figure 21

13.4 The Sutherland-Hodgman Polygon Clipping Algorithm

The Sutherland-Hodgman Polygon Clipping Algorithm is one of earliest polygon clipping algorithms.
It can clip general polygons including normal convex, concave and self intersecting polygons. How-
ever, the only limitation it has is that the window for clipping has to be concave. Although it has
been replaced by some more general and efficient algorithms such as Vatti clipping algorithm, its
fame for being easily understandable still makes it one of the popular choices. To learn about the
more general Vatti algorithm, please refer to the Further Reading section.

Sutherland-Hodgman algorithm starts with a list of polygon sides. For each window boundary, it
clips all sides against that boundary. Suppose we have a rectangular window and the left boundary
is x = 1. Then for each vertex (x0, y0), it is simple to test if it lies on the right or left side of the
left boundary. If x0 > 1, then the vertex is on the right side. Otherwise, it is on the left side. We
also call the left side of a left boundary the outside of this boundary as any point in this region is
definitely outside the window. We call the right side of a left boundary the inside of this boundary

25

as any point in this region may be located inside the window. The similar classification applies to
the other three boundaries.

After knowing how to do inside tests, before we dive into the details of the algorithm, we have to
change our notion about what a polygon side represents. Instead of only considering a polygon side
as a line segment, we are going to also consider it as a vector. That is, in the following paragraph,
we are going to consider it as a line segment with direction. The ending point of the vector of a
polygon side will be the starting point of the vector of the next side.

In Sutherland-Hodgman algorithm, for each polygon side being clipped against a particular
window boundary, we first determine which vertex lies inside or outside of this boundary. If both
vertices lie inside the boundary, we the coordinates of both points. If both vertices are outside, we
discard them and move to the next side. If one is inside and another is outside, the polygon side
must cross the boundary line. We then determine the point of intersection between the side and the
boundary. After that, we save the coordinates of the point of the intersection and the vertex inside
the boundary. Suppose we have clipped the first polygon side and it does not lie completely outside
the boundary. That is, for this polygon side, we have saved coordinates of two points in memory. For
the next polygon side we consider against the same boundary, we repeat the same procedure. If both
vertices are outside, we discard them and move on to the next side until we encounter a side which
has at least one vertex inside the boundary. We then retrieve the previous two points we saved.
Since each polygon side corresponds to a vector, each clipped side also corresponds to a vector. We
denote the ending point of the vector of the previous clipped side as p1 and the starting point of the
vector of the current clipped side as p2. We then connect them using a move command. That is, in
the display file, we move from point p1 to p2. For each move command we add, we essentially add
one more polygon side. However the polygon side is invisible since it is only a portion of the window
boundary. We continue the process with all sides of a polygon with this particular boundary. After
that, we iterate through the remaining boundaries. At the end, we will some line drawing commands
and move commands which enable the display file to draw the clipped polygon correctly.

If all the sides lie outside of any of the window boundaries, then no commands will be entered in
the display file. If at least one boundary crosses any of the boundaries, another side will have to cross
the same boundary because a polygon is closed without gaps on its sides. Therefore the algorithm
described above is consistent with any polygons. We either have a clipped polygon (including a
polygon lies completely inside) or a polygon lying completely outside. In either case, the result is
desired. We either have polygon with zero or more invisible sides or polygon that is never drawn.

13.5 Limitations of Sutherland-Hodgman Algorithm

As mentioned in the beginning of the previous subsection, Sutherland-Hodgman Algorithm has
certain limitations. One of them is that the window has to be convex. To see why the window
cannot have other shapes such as a concave or self-intersecting polygon, recall inside testing against
each window boundary is an essential part of the algorithm. When we have a window of convex
shape, when a vertex is outside of any boundary line, we are sure it is outside of the window.
However, when we have a window of concave shape, when a vertex is outside of a boundary line, it
might be the case that the vertex is actually inside the window. Therefore, the inside test against
each boundary of a window of concave shape is not always consistent. We will also be in the same
situation if we use a window shaped as a self-intersecting polygon.

13.6 Further Reading

Although Sutherland-Hodgman Clipping Algorithm has the limitation that the window has to be
convex, it is still a popular choice because in most cases we only need a concave window. In the cases
when using a window of non-concave shape is necessary, Vatti algorithm will be a better choice. To
learn about this algorithm, refer to [Vat92]

26

14 3D Representation and Transformation

Until now we have considered how to draw 2D shapes on screen. Although for some tasks what
we have developed is enough, it is certainly more interesting if we may not only be able to put flat
shapes but also 3D ones on screen. The way of doing this is actually much easier than what most of
us might have thought. It turns out that drawing 3D shapes is as simple as applying transformations
on 2D shapes. The only problem we need to solve is then what the specific transformations we need
to construct. However, before we keep ourselves busy constructing those special transformations,
we have to know first how to represent 3D shape in an abstract and manageable way in computer
memory.

14.0.1 3D Representation

In the 3D world, since there are three different dimensions, we need at least 3 parameters to represent
a 3D object. The most convenient form of representation is Cartesian coordinates as we used in 2D
world. In some other situations, we might use other systems of coordinates to represent a point, but
the conversion from most of the other systems to Cartesian coordinates is well-known and simple to
implement. Here, we will stick with Cartesian coordinates in our discussion.

A point in 3D world can be represented as (x, y, z). A line can be represented with a point on
the line and vector indicating its direction. It is not easy and in most cases not convenient to derive
and use a single equation of a line in 3D. Therefore, we will exclusively use parametric form of a
line. The parametric representation of a line also makes it easy to specify a line segment as we
only need to specify the range of the parametric variable. For polygons in 3D, we restrict ourselves
in only considering a polygon with all of its sides being on the same plane. That is, although our
representation of a polygon as an array of vertices makes it possible to have the sides on different
planes, we discard those radicals and only consider conventional polygons.

14.1 Transformation in 3D

Trying to represent and make use of 3D figures essentially introduce two different worlds, or two
chunks of memory space we interpret differently. The first is the 3D world. It models the actual
world we live without reference to time. The second is the 2D world. It models the plane of computer
or TV screen where we actually can see what our figures are like. It would be ideal if we can have
a 3D screen and simply put our 3D figures on the screen. However, most screens on market are
flat. Therefore, our 3D figures remain as abstract representation and to view them, we have to find
a systematic way to map them into the 2D world. We will call the 3D world our data model and
simply refer 2D world as screen or the plane of a screen.

Before we see the actual ways of mapping from data model to screen, we need to extend our
notions of transformations from 2D to 3D. The transformations we are going to introduce are essential
in understanding and constructing the mappings.

14.2 Scaling and Translation

Same as in 2D, scaling refers to squeezing and stretching and translation refers to movement in space
without changing shape. However, instead of two coordinates, we now have three coordinates to work
on, so instead of squeezing, stretching or moving in two possible directions, we will be squeezing,
stretching or moving our figure in three possible directions. Also, the addition of z-coordinate
requires us to use 4 matrix.

The matrix for scaling is given below where sx, sy, sz refer to the x, y, z scaling factors respec-
tively. 

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



27

Let’s apply the matrix to an arbitrary point (x, y, z) to verify it produces desired result. Again, we
have a dummy coordinate w0 to allow the use of 4× 4 matrix in order to make room for translation
factors.

[
x y z w0

] 
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 =
[
sxx syy szz w0

]
The matrix for translation is also similar to its counterpart in 2D. Below, we have tx, ty and tz as
translation factors for each coordinate respectively.

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1


Applying it gives us:

[
x y z w0

] 
1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

 =
[
x+ w0tx y + w0ty z + w0tz w0

]

which is as expected after assigning w0 with value 1.

14.3 Rotation about Axis

Rotation in 3D is a little more different than in 2D. Unlike in 2D, rotating about a point in 3D is
nonsense since the number of paths of rotation is infinite. The point can end up being anywhere on
the surface of a particular sphere. The only sensible form of rotation is rotation about a line. The
line can x-, y-, z-axis or any other arbitrary line. In this section, we consider rotation about the
three axes. In the next section, we will explore the way of rotating about an arbitrary line based on
simpler transformations such as translation and rotation about an axis introduced in the previous
and current sections.

14.3.1 Rotation about z-Axis

Rotation about z-axis is particularly easy to understand. Since the point of interest is moving around
the z-axis, its z-coordinate remains constant while the other two coordinates keep changing. It is
as if we are moving in the xy plane which has exactly the same representation with a screen or the
2D world. Therefore, the only thing we need to do is simply inserting the components of our 2× 2
matrix for rotation about origin into 4× 4 identity matrix. The matrix is given below. The angle of
rotation is represented by symbol θ and the direction of rotation is counterclockwise.

cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1


Verification for the validity for this matrix to produce the coordinates of the rotated point is similar
to previous matrices and not hard to do, so we will not cover the details here.

14.3.2 Rotation about x-Axis

Rotation about x-axis is similar to that of z-axis. We simply relabel the three axes and treat x-axis
as if it is the z-axis. And we treat the other two axes as the x- and y- axes. Then the rotation

28

about x-axis is identical as the rotation about z-axis. Again, the construction of the matrix is simply
replacing some components in the 4× 4 identity matrix and the matrix is given below.

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


Verification for this matrix is left to the reader as exercise.

14.3.3 Rotation about y-Axis

Constructing the matrix for rotation about y-axis is also achieved by relabling the axes. We will not
go into details here as the process is similar. The matrix for rotation about y-axis is given below.

cos θ 0 − sin θ 0
0 1 0 0

sin θ 0 cos θ 0
0 0 0 1


14.4 Rotation about an Arbitrary Line

Remember when we were constructing matrices for rotation about an arbitrary point in 2D world, we
first translate the center of rotation to the origin, then rotate about the origin and finally translate
back. The process of constructing matrix for rotation about an arbitrary line is similar though more
details have to be taken care of. We first transform the axis (line around which the rotation is done,
not the x-, y-, or z- axes) to some position or orientation where we know how to rotate about the
axis. Next, we rotate about the axis and finally use inverse transformations to bring the axis back
to its original position and orientation.

Thus, the problem resides in where we know how to rotate about a line already. So far the only
lines around which we are able to rotate a point are the three axes of the coordinate system. These
are what we will use to build the matrix for rotation about an arbitrary line.

Suppose the axis is specified by the following equations:

x = Au+ x1

y = Bu+ y1

z = Cu+ z1

where [A,B,C] is the vector indicating the direction of the line. From the equations, wer are sure
(x1, y1, z1) is on the line. Therefore we translate the axis by the factors −x1, −y1 and −z1 such that
the line passes through the origin. The matrix for doing this is given below and denoted as T :

T =


1 0 0 0
0 1 0 0
0 0 1 0
−x1 −y1 −z1 1


Since eventually we want to translate back to its original position, we will also make its inverse
matrix:

T−1 =


1 0 0 0
0 1 0 0
0 0 1 0
x1 y1 z1 1


The next step is trying to rotate the axis of rotation around x-axis until the axis of rotations is in
xz-plane. However, we do not how much the rotation angle about x-axis is. To figure that out,
imagine we make a parallel projection of the line onto the yz-plane. The direction of projection is

29

parallel to x-axis. Since the direction vector of the line is [A,B,C] and we have moved it such that
it passes origin, the line segment L1 from point (0, 0, 0) to (A,B,C) is on the axis of rotation. The
projected point of (A,B,C) will have coordinates (0, B, C). Denote the line segment from origin to
(0, B,C) as L2. The length of this segment is then

V =
√
B2 + C2

When we rotate L1 around x-axis, segment L2 is also rotated. The angles of each rotation are equal.
That is, to find out the amount L1 needs to rotate about x-axis to land in xz-plane, we can instead
find the angle of rotation of L2. Moreover, we actually do not need to know how much this angle
is. Since in all the rotation matrices, only the cosine and sine of an angle is used, we only need to
obtain those two values instead of the actual angle.

Basic trigonometry in yz-plane give us:

sin I =
B

V

cos I =
C

V

where I is amount that L2 needs to rotate about the origin in yz-plane.
Fortunately, each of the three values B, C and V is known beforehand, and the matrix Rx is as

follows:

Rx =


1 0 0 0
0 C/V B/V 0
0 −B/V C/V 0
0 0 0 1


and we also need the inverse matrix:

Rx
−1 =


1 0 0 0
0 C/V −B/V 0
0 B/V C/V 0
0 0 0 1


Suppose the final target matrix we want to achieve eventually isM . Up until now, we haveM = TRx.
This temporary value of M is the same as saying our axis of rotation is lying in the xz-plane. The
next step is rotating about y-axis so that it overlaps z-axis. Then the rotation about the line is the
same as rotation about z-axis, which is easily achievable.

Denote the line segment in xz-plane after rotating L1 about x-axis as L3. Its length N does not
change after applying T and Rx. Therefore,

N =
√
A2 +B2 + C2

If we have to rotate about y-axis for angle J , then,

sin J =
A

N

cos J =
V

L

and the matrix Ry for such a rotation will be:

Ry =


V/N 0 A/N 0

0 1 0 0
−A/N 0 V/N 0

0 0 0 1



30

The inverse matrix is,

Ry
−1 =


V/N 0 −A/N 0

0 1 0 0
A/N 0 V/N 0

0 0 0 1


Finally, we are going to rotate about z-axis for angle θ. Since now the axis of rotation is the same
as z-axis, rotating about z-axis is the same as rotating about the line. The matrix Rz for this is,

Rz =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1


Notice that we do not need the inverse of matrix Rz.

Putting all the matrices we have developed so far in this section, we can finally obtain the correct
matrix M for rotation about an arbitrary line:

M = TRxRyRzRy
−1Rx

−1T−1

15 Projection from 3D to 2D

Equipped with the tools of 3D transformation, finally we are going to introduce how to map a
3D object onto a 2D screen. This process of mapping is called projection. Intuitively projection
might sound complicated but actually, surprisingly enough, projection is as simple as a special type
of projection. Once we know the matrices for projection, what is left to do is simply doing some
matrix algebra and get the coordinates for drawing on screen.

Since on a flat screen we only need two numbers to specify the position of a point and in 3D
model, we use three numbers to specify a point, some of us might guess using a 3×2 matrix will suffice
the purpose of projection. However, although this approach is doable, using a non-square matrix
introduces problem when we want to combine transformations as matrix multiplication requires the
number of columns in the previous matrix being equal to the number of rows in the next. Also, some
transformations like translation will pose problems as its matrix is not compatible with a matrix
having dimensions other than 4× 4. And translation matrix is certainly used in the construction of
certain type of projection. Therefore, we will continue using 4× 4 matrices as our representation of
transformation and projection and we will augment the coordinates in 2D and 3D worlds to have
dimension 4. That is, in 3D, we keep using the coordinates with dummy coordinate w0. And in 2d,
we use (x, y, z, w0) as the coordinates even though z may not be used.

Below is a brief introduction of the two major types of projection.
A parallel projection is formed by extending parallel lines from each vertex on the 3D object

until they intersect the screen. The point of intersection is the projection of the vertex. We connect
the projected vertices by line segments which corresponds to original object [Har87]. One common
use of parallel projection is found in engineering field such as a three-view drawing shown in Figure
22.

An alternative projection is a perspective projection. In a perspective projection, the further
away an object is from the viewer, the smaller it appears. This provides the viewer a depth cue.
The lines of projection are not parallel. Instead, they all converge at a single point called the center
of projection. It is the intersections of these converging lines with the plane of the screen that
determine the projected image [Har87]. A close analogy of perspective projection is human eyes or
camera which operate under the same mathematical model. An illustration of this type of projection
can be found in Figure 23.

15.1 Parallel Projection as Transformation

As mentioned above, same with transformation, projection can be represented simply as a matrix.
In this section, we explore how to construct the matrix for parallel projection.

31

Figure 22: This is a three-view drawing of a truck using parallel projection [Res]. This kind of
drawing is often used in engineering field

Figure 23: In a perspective projection, the lines behave like rays when they converge at one point
[Tou].

32

Suppose xy-place is the place where we want project the object of interest. Since parallel pro-
jection is defined by having extended parallel lines going from vertices and intersecting the plane,
the direction of these parallel lines can be given by a single vector [xp, yp, zp]. Then suppose one of
the parallel lines extends from a point (x1, y1, z1) which is a vertex of the object. The equations for
this line can be written as follows:

x = x1 + xpu

y = y1 + ypu

z = z1 + zpu

Notice that when the line intersects the xy-plane, the z-coordinate becomes 0. Therefore,

u = −z1
zp

We substitute this into the equations for x and y.

x2 = x1 − z1(xp/zp)

y2 = y1 − z1(yp/zp)

which can be re-written as matrix:

[
x2 y2 z2 1

]
=
[
x1 y1 z1 1

] 
1 0 0 0
0 1 0 0

−xp/yp −yp/zp 1 0
0 0 0 1


In this process of matrix multiplication, we preserve the value of z-coordinate even though the matrix
is still correct without it. The purpose of doing this is to allow the use of z-coordinate in algorithms
for removing hidden lines and surfaces. Although we are not going to cover these topics in this
paper, references to other papers and learning materials can be in the Further Reading section at
the end of this paper.

15.2 Perspective Projection as Transformation

In perspective projection, if the center of projection is at (xc, yc, zc), then one of the converging
projection lines will be given by:

x = xc + (x1 − xc)u
y = yc + (y1 − yc)u
z = zc + (z1 − zc)u

Again, to solve the three equations, we use the same logic with parallel projection. Because the
projected point (x2, y2) must be on screen, z has to be zero. Therefore,

u = − zc
z1 − zc

and substitution gives us:

x2 = xc − zc
x1 − xc
z1 − zc

y2 = yc − zc
y1 − yc
z1 − zc

We can also re-write the two equations above as:

x2 =
xcz1 − x1zc
z1 − zc

y2 =
ycz1 − y1zc
z1 − zc

33

It is them simple to put them into a matrix.
−zc 0 0 0

0 −zc 0 0
xc yc 0 1
0 0 0 −zc


16 Viewing Parameters in 3D

A 3D object in the 3D coordinate is static as long as we are concerned about animation which is a
separate issue. Using either parallel or perspective projection can allow the user to see one side of
the object, but the problem remains what is the user desires to see other sides of the object. In this
section, we introduce the concept of viewing parameters. It is essentially a virtual camera which we
are free to move, rotate or change the direction it is pointing. These viewing parameters are better
understood in metaphor, and below we are going to keep using camera as our metaphor to introduce
each of them.

The first parameter we should consider is the view reference point, having coordinates (xr, yr, zr).
The view reference point is the center of attention [Har87]. In other words, it is the focus point of
a camera or human eyes.

Before we introduce the other parameters, let’s make clear the difference between the two coor-
dinate systems we are going to use in a 3D world. We will refer to one of the systems as the ground
coordinate system. Imagine that the whole data model is a room and the object of interest is inside
this room. The ground coordinate system has origin at one of the corners of the room. Besides, it is
static and never moves or rotates. Another coordinate system we are going to use is the perspective
system (do not confuse this with perspective projection). Imagine in the room mentioned above,
there are not only the ground coordinate system and the object of interest but also an observer.
The specific point in the room which the observer looks at or he/she points a camera at is the the
view reference point.

The retina of the observer or the film of the camera, if the observer uses an old-style non-digital
camera, will work as a screen. We call such a screen view plane. Then the coordinate system of
our screen or view plane becomes separate from the ground coordinate system in 3D. Instead it is
derived from another separate 3D coordinate system which is the perspective system. Besides the
view reference point, the vector called view plane normal [xn, yn, zn] determines from what direction
we look at the view reference point. This vector always points towards the view reference point and
is always perpendicular to our view plane. It can also have length instead of only holding information
about direction. The length is the distance d between the center of the view plane and the view
reference point. To make those viewing parameters more intuitive to understand, we also have the
view plane normal intersects the view plane at its center and the intersection will serve as the origin
of the perspective system.

There is one more parameter yet to be introduced. Since a camera can be rotated or held
upside down and we, as humans, with a neck without underlying spine problems, can bend the head
sideways, we also want to enable our view plane to do the similar. View-up direction is a vector
[xup, yup, zup] that indicates the “up” direction. More precisely, it is the part of the view-up vector
projected on the view plane that determines the “up” direction. Changing the view-up direction
vector will be effectively the same as rotating our camera.

16.1 Viewing Parameters as Transformation

Same as projection, viewing parameters can be implemented using transformation as well with our
powerful matrix representation. Instead of treating the view plane or observer as the moving part,
we will do the other way around. The 3D model will start with the origins of both the ground and
perspective coordinate system overlapping each other. Then we are going to transform the ground
coordinate system into its right position and orientation with reference to the perspective system
according to the viewing parameters specified by a user. We first find the factors tx, ty and tz

34

according to which the ground system should be translated. The translation matrix T is shown
below

T =


1 0 0 0
0 1 0 0
0 0 1 0

−(xr + xnd) −(yr + ynd) −(zr + znd) 0


Notice that for each of the translation factors, it has a negative sign in the front. This is because
we are actually moving the ground coordinate system into the right place instead of moving the
perspective one. After using matrix T , the origin of the ground system is at the right place but its
orientation is not quite right.

We have not defined the perspective coordinate system in a formal way besides only mentioning
it resembles a camera or a pair of human eyes and the place of its origin. To see how to make
the ground system have the correct orientation, we must first know what the orientation of the
perspective system is. Namely, we need to know what are the axes of the perspective system and
what the positive directions are. Here, we define the view plane normal is parallel to the z-axis and
direction of view plane normal is the positive direction. Since we also define the view plane normal
intersects the view plane at origin, view plane normal lies on the z-axis. Furthermore, The x- and
y- axes of the view plane or screen are the x- and y- axes of the perspective system.

After the origin is in place, we next align the z-axis. This is similar to the rotation about an
arbitrary line. In discussion of that transformation, we try to align the axis of rotation to the z-axis
in two steps. First, a rotation about the x-axis places the line in the xz-plane. Then a rotation
about the y-axis moves the line to its desired position. [Har87]. That is, overlapping the z-axis. The
only difference in what we are trying to do with ground system now is that we never use inverse
matrices to bring back the line to its original position.

With view plane normal as [xn, yn, zn], we define:

V =
√
y2n + z2n

which is similar to what we did in rotation about an arbitrary line. Then we have the rotation
matrices as follows:

Rx =


1 0 0 0
0 −zn/V −yn/V 0
0 yn/V −zn/V 0
0 0 0 1



Ry =


V 0 −xn 0
0 1 0 0
xn 0 V 0
0 0 0 1


So far, we have three matrices ready to be applied. IfM is the matrix representing the transformation
according to viewing parameters, then M = TRxRy is in a temporary state. The origin and z-axis
of the ground coordinate system are at the right place, but the x- and y- axes depend on the vector
view-up direction. The matrix for aligning the remaining two axes is given below.

Rz =


yk/rup xk/rup 0 0
−xk/rup yk/rup 0 0

0 0 1 0
0 0 0 1


where [

xk yk z 1
]

=
[
xup yup zup 1

]
RxRy

and
rup =

√
xk2 + yk2

After constructing each of the four matrices, the transformation for viewing parameters can be found
using matrix multiplication. The matrix is:

M = TRxRyRz

35

17 Further Reading

Although up to this point we are able to draw a 3D object on screen using either parallel or
perspective projection, what is actually shown on screen will have a structure resembling wire-
frame drawings. That is, some lines or surfaces covered by another surface are shown even though
in a realistic representation of an object such as a house, those lines and surfaces are never drawn on
screen. To solve this problem, we need remove those hidden surfaces and lines. Various algorithms
have been discovered to do this. An excellent introduction for these algorithms can be found in
chapter nine in the book [Har87]. Some other solutions for removing hidden lines are described in
[App67], [Gal69], and [PP70].

As we see through the paper, representing tans transformation and projection as matrices give
excellent and efficient solutions to many problems. Further discussion of homogeneous coordinates
and transformations can be found in [Ahu68]

Same with 2D shapes, 3D figures can be clipped and put into a window. However, the clipping
window will not be a flat polygon when clipping 3D objects. The window will become a volume
bounded by a left, right, top, bottom surfaces corresponding to the boundary lines in 2D window. In
addition, there are also boundary surfaces in the front and at the back. Having six boundary surfaces
is only the minimum requirement for 3D window. More complex clipping window or volume in 3D
can be built. Sutherland-Hodgman algorithm can be certainly applied in this situation as it only tries
to test if a vertex is inside and find the intersection if a polygon side intersects the boundary. We only
need to have new routines to test against the boundary surfaces and find the point of intersection
when necessary. A discussion for the details of implementation using Sutherland-Hodgman algorithm
for 3D can be found in chapter eight in book [Har87]. When we discuss about clipping 2D polygons,
we mention Vatti algorithm [Vat92] as a more efficient and more general algorithm for clipping.
However, Vatti algorithm can not be applied in 3D. The Sutherland-Hodgman algorithm, though
discovered back in 1970s [Sut74], is probably the best choice for 3D clipping as of today. This
implies that computer graphics still have lots of room for improvement and more efficient and
powerful algorithms are still waiting for our discovery.

References

[1] Coons Ahuja. “Geometry for Construction and Display”. In: IBM Systems Journal 7.34 (1968),
pp. 188–205.

[2] A. Appel. “The Notion of Quantitative Invisibility and the Machine Rednering of Solids”. In:
Proceedings of the ACM National Conference (1967), pp. 387–393.

[3] Marino. G. Braccini C. “Fast Geometrical Manipulations of Digital Images”. In: Computer
Graphics and Image Processing 13.2 (1980), pp. 127–141.

[4] W. Burton. “Representation of Many-Sided Polygons and Polygonal Lines for Rapid Process-
ing”. In: Communications of the ACM 20.3 (1977), pp. 166–171.

[5] D. Y. Fourner Montuno. “Triangulating Simple Polygons and Equivalent Problems”. In: ACM
Transactions on Graphics 3.2 (1984), pp. 153–174.

[6] W. R. Franklin. “Rays - New Representation for Polygons and Polyhedra”. In: Computer
Vision, Graphics and Image Processing 22.3 (1983), pp. 327–338.

[7] Montanari Galimberti. “An Algorithm for Hidden-line Elimination”. In: Communications of
the ACM 12.4 (1969), pp. 206–211.

[8] Preparata Garey Jonson. “Triangulating a Simple Polygon”. In: Information Processing Letters
7.4 (1978), pp. 175–179.

[9] Steven Harrington. Computer Graphics - A Programming Approach. McGraw-Hill Book Com-
pany, 1987. isbn: 0070267537.

[10] Sequin Newell M.E. “The Inside Story on Self-Intersecting Polygons”. In: Lambda 1.2 (1980),
pp. 20–24.

36

[11] Loutrel P.P. “A Solution to the Hidden-Line Problem for Computer-Drawn Polyhedra”. In:
IEEE Transactions on Computers C-19.3 (1970), pp. 205–213.

[12] Researchgate.net. A Summary of the Experimental Results for a Generic Tractor-Trailer in the
Ames Research Center. url: https://www.researchgate.net/publication/268364945_
A_Summary_of_the_Experimental_Results_for_a_Generic_Tractor-Trailer_in_the_

Ames_Research_Center_7-by_10-Foot_and_12-Foot_Wind_Tunnels.

[13] Hodgman GW Sutherland IE. “Reentrant polygon clipping”. In: Communications of the ACM
17.1 (1974), pp. 32–42.

[14] Toushitouei. Perspective Projection. url: http://art-design-glossary.musabi.ac.jp/
perspective-projection/.

[15] Tutorialspoint.com. 2D Transformation. url: https://www.tutorialspoint.com/computer_
graphics/2d_transformation.htm.

[16] Tutorialspoint.com. Line Generation Algorithm. url: https://www.tutorialspoint.com/
computer_graphics/line_generation_algorithm.htm.

[17] Bala R. Vatti. “A generic solution to polygon clipping”. In: Communications of the ACM 35.7
(1992), pp. 56–63.

[18] What-when-how.com. Clipping (Basic Computer Graphics). url: http://what-when-how.
com/computer-graphics-and-geometric-modeling/clipping-basic-computer-graphics-

part-1/.

[19] Xiaolin Wu. An Efficient Antialiasing Technique. 1991. url: http://dl.acm.org/citation.
cfm?id=122734.

37

https://www.researchgate.net/publication/268364945_A_Summary_of_the_Experimental_Results_for_a_Generic_Tractor-Trailer_in_the_Ames_Research_Center_7-by_10-Foot_and_12-Foot_Wind_Tunnels
https://www.researchgate.net/publication/268364945_A_Summary_of_the_Experimental_Results_for_a_Generic_Tractor-Trailer_in_the_Ames_Research_Center_7-by_10-Foot_and_12-Foot_Wind_Tunnels
https://www.researchgate.net/publication/268364945_A_Summary_of_the_Experimental_Results_for_a_Generic_Tractor-Trailer_in_the_Ames_Research_Center_7-by_10-Foot_and_12-Foot_Wind_Tunnels
http://art-design-glossary.musabi.ac.jp/perspective-projection/
http://art-design-glossary.musabi.ac.jp/perspective-projection/
https://www.tutorialspoint.com/computer_graphics/2d_transformation.htm
https://www.tutorialspoint.com/computer_graphics/2d_transformation.htm
https://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm
https://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm
http://what-when-how.com/computer-graphics-and-geometric-modeling/clipping-basic-computer-graphics-part-1/
http://what-when-how.com/computer-graphics-and-geometric-modeling/clipping-basic-computer-graphics-part-1/
http://what-when-how.com/computer-graphics-and-geometric-modeling/clipping-basic-computer-graphics-part-1/
http://dl.acm.org/citation.cfm?id=122734
http://dl.acm.org/citation.cfm?id=122734

	Introduction
	Basic Problems in Graphics
	Drawing a Line Segment
	The First Algorithm: DDA
	Bresenham's algorithm
	Anti-aliasing
	Display File
	Polygon Representation
	Polygon Filling
	Even-odd rule/method
	Winding Number Method
	Use Even-odd/Winding Number Method
	Further Reading

	Transformation
	Scaling Transformation
	Rotation
	Translation
	Rotation about an Arbitrary Point
	Reflection
	Shear
	Inverse Transformation
	Further Reading

	Re-visting Display File
	Segment
	Windowing and Clipping
	Windowing
	Windowing Transformation
	Clipping
	The Cohen-Sutherland Outcode Line Clipping Algorithm

	The Sutherland-Hodgman Polygon Clipping Algorithm
	Limitations of Sutherland-Hodgman Algorithm
	Further Reading

	3D Representation and Transformation
	3D Representation
	Transformation in 3D
	Scaling and Translation
	Rotation about Axis
	Rotation about z-Axis
	Rotation about x-Axis
	Rotation about y-Axis

	Rotation about an Arbitrary Line

	Projection from 3D to 2D
	Parallel Projection as Transformation
	Perspective Projection as Transformation

	Viewing Parameters in 3D
	Viewing Parameters as Transformation

	Further Reading

