
Supporting Interdisciplinary Computing
Pedagogical Inquiry Grant Final Report

John Stratton: Computer Science, coordinator
Dalia Biswas: Chemistry
Claire Harrigan: Geology
Wally Herbranson: Psychology
Marina Ptukhina: Mathematics and Statistics
Jason Ralston: Economics
Peter Shultz: WCTS
Ashmeet Singh: Physics
Matthew Tien: Biology

Outcomes Overview
In our working group this semester, we discussed how we teach computational techniques to
students across our disciplines, shared experiences and best practices, reviewed relevant
pedagogical literature, and examined curricula from other institutions. We also sought input from
students about their experiences. Based on our discussions, we plan to offer a CTL workshop
for faculty in general about best practices for integrating computing into different disciplinary
courses and curricula next semester. The immediate impacts have been primarily to our own
current and future courses as individual faculty, but we will likely see more curricular innovations
proposed and implemented over the coming years in response to what we’ve learned from each
other and our students through this working group.

Pedagogical Strategies
We began our discussion by reviewing literature from within Computer Science Education on
practices that the CS department regularly uses, including pair programming for in-class
exercises and group projects.

Typical Learning Outcomes
In our discussions, we found that our disciplines often had some common learning high-level
outcomes for students learning to use computational tools. Most participants agreed that in their
courses, students should be able to:

1) Apply existing software tools for solving disciplinary problems
2) Adapt existing software to their specific context



3) Independently identify and troubleshoot software problems by finding and using publicly
available documentation and examples

We hope that adaptations of these learning goals might be useful for more explicitly adding to
current or future courses.

Learning Programming in Pairs
Pair programming is a common and well-researched approach in introductory CS courses to
help students manage the cognitive load of learning to think about abstract problem-solving
strategies and the specific syntax requirements of a particular programming language. Pair
programming gives students problems to solve in pairs, with one student assigned the role of
“driver”, person actually typing at the keyboard, and “navigator”, the person responsible for
figuring out the abstract algorithm to implement and giving feedback to the driver. These roles
swap periodically, and give students practice both with the mechanics of programming and
algorithmic problem-solving skills but not overloading them with both in exactly the same
moment. When done well, this can also help students manage imposter syndrome by seeing
that their peers are also challenged, and create a supportive environment where students are
actively helping each other succeed at the task at hand. Uncooperative students can make this
strategy a challenge, but individual coaching on the benefits of prosocial behaviors to
themselves and their peers can help students buy in more. While this approach is most often
employed when teaching traditional programming languages, any environment where students
need to simultaneously learn challenging abstract problem solving and concrete technology
could benefit from this kind of approach.

Computing Tool Adaptation
Faculty from several disciplines outside of computer science found that trying to teach students
a programming language from scratch is unnecessarily burdensome, and that students can
often more easily achieve their goals in the discipline by adapting code written by others rather
than learning to write new software from scratch. This does limit their ability to design novel
computational tools for themselves, but is an excellent approach for building data analysis
scripts or tools in many circumstances.

No-Coding Computational Tools
Many disciplines have computational tools with interfaces that don’t resemble classical
programming languages. Discipline-specific “widgets” or well-designed user interfaces for
specific problems are frequently introduced to students as a first exposure to computational
methods or tools, particularly for students who may find math or programming intimidating at
first. Many disciplines have some tools like this already available and can be accessible to both
students and faculty with no prior computational experience.



Curricular Structures
In integrating computing skills into a department’s curriculum, we found three common
approaches within and beyond Whitman in a variety of disciplines.

1) Offer specialized courses dedicated to learning to use disciplinary computational tools
2) Supplement traditional courses with computational methods specific to those courses
3) Infuse computational methods throughout the curriculum, so that student computational

skills are scaffolded along with their other disciplinary analytical and practical skills
4) Introduce new interdisciplinary curricula (minor or concentration) specifically on

computing methods that can support a variety of existing disciplines

Each of these require a different degree of instructor and institutional commitment, but all are
valuable, and each can be effective in achieving certain kinds of major learning outcomes. At
Whitman, Chemistry is currently doing the most to attempt to integrate computation throughout
the curriculum, with other departments using some mixture of the first two approaches. Clearly,
larger-scale interventions have the greatest potential for more depth in computational skill
building, but initiatives generally start with one or two faculty integrating computational tools into
new or existing courses as a first step, which several departments are doing.

Potential Directions for Future Investment
The fourth option, creating a new interdisciplinary program for computing methods, seems
interesting but premature, as we don’t yet have enough pre-existing courses to draw from to fill
out possible minor requirements that would be applicable to more than a couple departments,
and the institution is still working out general principles for how a concentration could be
defined. We identified some of the interdisciplinary course gaps, namely accessible introductory
courses on data analysis and/or numerical methods from an interdisciplinary approach.
Developing these courses would require more investment from departments and individual
faculty, but could be very beneficial.

Multiple departments are in the process of adding more specialized courses on computational
methods and/or integrating computation into more of the curriculum as a whole. There will be
ongoing collaboration, for instance, as Computer Science will likely add the new Introduction to
Computational Biology course as an alternative prerequisite to CS 167 for intermediate CS
courses.

The Computer Science department is expecting to do a significant reassessment of its major
structure and course offerings in the near future. Insights from this working group about the
current gaps in accessibility of CS classes and transferability of materials taught in the current
CS 167 course to other disciplines will contribute to those discussions.



Individual Impacts

John Stratton: Computer Science
What I have learned in this workshop will dramatically effect how I teach the next offering of CS
255: Computer Simulation Methods. In particular, I will use more instances of “copy and modify”
for building basic simulations based on preexisting software, after seeing how effective that
strategy can be in other disciplines. I will also be working with Ashmeet and Doug Hundley to
better understand how my course and their courses on numerical methods complement each
other. As the representative from Computer Science, I will also be taking all of these
perspectives into the CS curricular review when it happens over the next few years, to better
represent interdisciplinary concerns.

Dalia Biswas: Chemistry
This workshop taught me various pedagogical tools I would like to implement when teaching my
computational chemistry/biochemistry courses. I used “copy and modify” Python coding
techniques when preparing for different simulation methods in my computational biochemistry
course. I will incorporate more in-depth Python coding, which seems to be a common
programing language some faculty started incorporating in other science curricula (Ashmeet
Singh in Physics and Matthew Tien in Biology). Students will be more equipped when they take
my computational biochemistry course if Biology and Physics curricula introduce Python in
some of their core courses.

I’m interested in exploring machine learning (ML) algorithms, which is a useful tool for
Computed-Assisted Synthesis. Recently, I’m invited to join the NSF Center for
Computed-Assisted Synthesis. I hope to expand my knowledge of ML and incorporate more
projects in my computational chemistry course.

Claire Harrigan: Geology
If I were to teach Introduction to Geoscience Computing again, I would consider doing the
course in Python to be in alignment with other science faculty, and I would try paired
programming as a new learning strategy. One of the main things I got from working with the
group is that there are students interested in scientific computing that could benefit from more
structure in the curriculum and more discipline-specific courses.

Wally Herbranson: Psychology
I appreciated the chance to learn how computing is implemented in other departments, and how
they compare to what is done in Psychology. In our most relevant required course, Psyc 210L, I
plan to add in some subtle components that make computation more prominent (for example, by
using syntax mode in Jamovi). I will also overtly connect the material to other courses outside



psychology (now that I’m aware of the landscape) so that students can more effectively seek out
ways to strengthen their computational experiences after the class.

Marina Ptukhina: Mathematics and Statistics
Through our weekly meetings I learned a lot about programming/coding approaches in other
departments at Whitman. One of the things that I’m excited to try out is the paired programming
idea introduced at the workshop. It was also great to discuss opportunities that could be
developed at Whitman to enrich student experience. Multiple ideas for new courses were
discuss during our meetings that I believe are a very valuable outcome of this project. We hope
to continue these conversations in more detail in the future.

Jason Ralston: Economics
I learned a lot about pedagogical techniques that other departments use during our meetings. I
also learned about how other departments’ faculties had come together to create learning goals
specifically for computation. I am excited to try out some new ways of teaching programming in
my econometrics course, and look forward to talking to my own colleagues about our goals for
computational learning in economics.

Peter Shultz: WCTS
My participation in the group will enhance WCTS’s ability to support computational pedagogy,
particularly in departments outside of Math and Computer Science. It was an important chance
to hear not just which tools (platforms, frameworks, languages) are currently in use, but also
which are being considered for the future, and most importantly, what pedagogical values are
guiding those choices.

Ashmeet Singh: Physics
My participation with the group has allowed me to better understand the computational
landscape at Whitman, and will be instrumental in helping me integrate and embed
computations in the physics curriculum. In particular, I am excited to try out pedagogical
techniques, such as pair programming, that I have learned during interactions with the group in
my upcoming course on Computational Methods in Physics which I am piloting in Fall 2023. I
also look forward to continued collaboration with other faculty members across departments to
better align our courses for a more interdisciplinary curriculum.

Matthew Tien: Biology
As a new faculty member teaching a new interdisciplinary subject at Whitman, I benefited
greatly from the pedagogy discussions from the group. I was also able to identify the relevant
faculty members at Whitman that can help me in future research projects. Moreover, I was able
to understand how computing is conducted across other disciplines and how we may be able to



be more efficient in your pursuits of building computational methods into several curriculums
across Divisions at Whitman.

Reflections
Overall, our results do line up with the high-level goals of our proposal, the most unexpected
result being the conclusion that a generic interdisciplinary computing program is at best
premature, with next steps better directed towards combined majors (e.g. a likely Computer
Science/Chemistry proposal next year) and robust computing methods courses continued to be
added to various other programs. We collected a body of valuable pedagogical materials used
across multiple disciplines, with a draft of a CTL Workshop prepared that members will be
happy to offer next semester. Those of us teaching this semester have been able to more
thoughtfully assess our pedagogy in light of these materials, while others are planning to
incorporate these pedagogical approaches into upcoming courses as indicated in comments
above. The clearest outcome of the project is the sense of support that has been expressed by
participants, particularly those in departments where they lack departmental peers invested in
similar pedagogical goals of teaching computational tools. We look to ongoing impacts to
student learning in the computational courses that will be offered in the coming years by the
participating faculty, as indicated in the above comments.

The main limitation of this workshop is that the group of faculty was probably a bit too diverse
for many of our topics to be universally applicable. While learning about the diversity of
pedagogical goals was informative generally, it did lead to the fact that, for instance, our deeper
discussions of pair programming simply weren’t applicable to several faculty whose pedagogical
goals in their courses didn’t line up with the goals of that approach. Similarly, discussions of
computing widgets didn’t at all apply to some faculty. In retrospect, by identifying areas of
shared pedagogical interest more quickly within our diverse group, we could have spent time
more effectively by dividing according to pedagogical interests and spending time in smaller
groups diving deeper into specific pedagogical techniques and strategies that would be more
applicable to those within each group.


