
Computer Science

Chair: Janet Davis

William Bares (on sabbatical, 2023-24)

John Stratton

Jordan Wirfs-Brock

Students of computer science gain insight into a technology on which we increasingly rely, while learning new ways

of thinking and tools to solve problems in many domains. Central to computer science is the concept of an

algorithm—a precise, repeatable procedure for solving a well-defined problem. Computer scientists discover, define

and characterize computational problems; they design, implement, and evaluate algorithmic solutions. Studying

computer science in the context of a liberal arts education enables graduates to approach problems from multiple

perspectives and communicate effectively with diverse colleagues and stakeholders.

 Computer Science 167 is suitable for both potential majors and non-majors who have no prior computer science

experience. Students with prior experience should discuss their placement with a computer science faculty member.

 Learning Goals: Upon graduation, a student majoring in Computer Science will be able to:

• Understand and apply fundamental algorithms and data structures;

• Understand the abstractions supporting modern software systems, and how the construction of those

mechanisms affects the supported systems;

• Apply mathematical techniques to justify computational solutions and explore the limitations of

computers;

• Communicate computational ideas through speech, writing, diagrams, and programs;

• Work with a team to design and implement a substantial, integrative project;

• Propose and compare multiple solutions to computational challenges, with consideration for the

context and impact of each solution on the creators, maintainers, and users of that solution.

Distribution: Some courses completed in Computer Science apply to the quantitative analysis distribution area. See

General Studies Program for lists of courses that apply.

Total credit requirements for a Computer Science major: A student who enters Whitman College with no prior

experience in computer science will need to complete 34 credits.

 The Computer Science major:

▪ 30 credits (37 credits with neither prior credit for Mathematics 125 nor placement above Computer Science

167)

▪ Required Courses

o Computer Science 310, 370, 495, and 496

o Computer Science or Mathematics 320 and 327

▪ May be elected as Mathematics 320, but must be elected as Computer Science 320 to apply

toward the total credit requirement in Computer Science.

▪ May be elected as Mathematics 327, but must be elected as Computer Science 327 to apply

toward the total credit requirement in Computer Science.

o 12 additional credits of Computer Sciences courses at the 200-level or higher

▪ A student will typically take Computer Science 167, 210, 220, and 270 as

prerequisites to the explicitly required courses and three additional elective

credits at the 200 level or higher

▪ Notes on required courses

o Credits for Mathematics 320 and 327 do not count towards the required 30 total credits in

Computer Science for the major.

▪ Other notes

o Mathematics 124 or 125 is a prerequisite to Computer Science 220.

o No AP credits in Mathematics and Statistics

o Students with a 4 or 5 on the AP computer science (A) test are considered to have completed the

equivalent of Computer Science 167 and receive four credits in computer science.

o No more than 10 credits earned in domestic or foreign study programs, transfer credits, and/or AP

or IB credits may be used to satisfy the course and credit requirements for the major.

o If considering graduate study, CS majors are encouraged to take additional courses in Mathematics

and Statistics, particularly Mathematics 240 or 247

o No P-D-F after declaration

o Not independent study may be used

• Senior Requirements

o 495 and 496

o Written and Oral examinations

• Honors

o Students do not apply for admission to candidacy for honors

o Students must submit a proposal for their thesis or project

• Must be submitted within the first six weeks of the two-semester period in which student

is eligible

o Accumulated at least 87 credits

o Completed two semesters of residency at Whitman.

o Cumulative GPA of at least 3.300 on all credits earned at Whitman College

o Major GPA of at least 3.500

o Complete a written thesis or research project prepared exclusively for the satisfaction of this

program

o Earn a grade of at least A- on the honors thesis or project and the honors thesis course

o Pass the senior assessment with distinction

o Chair of the department will notify the Registrar of students attaining Honors no later than the

beginning of week 12 of the semester.

o An acceptable digital copy of the Honors Thesis must be submitted to Penrose Library no later

than Reading Day

 The Computer Science minor:

• 15 Credits in courses numbered 200 and above

• Other notes

o No independent studies may be used

o No P-D-F after declaration

The Data Science minor: The requirements are fully described in the Mathematic and Statistics listing of the

catalog.

The Geology-Computer Science combined major: The requirements are fully described in the Geology listing of

the catalog.

100-104 Special Topics in Introductory Computer Science
1-4 credits
A course which examines special topics in computer science at the introductory level. Any current offerings follow.

167 Introduction to Computational Problem Solving
Fall, Spring Staff 4 credits
Students will learn to design, document, implement, test, and debug algorithmic solutions to computational

problems in a high-level, object-oriented programming language. We introduce core concepts: algorithms, data

structures, and abstraction. We apply foundational constructs common to all programming languages: data types,

variables, conditional execution, iteration, and subroutines. Students will gain experience with exploratory and

structured approaches to problem solving through collaborative in-class exercises. Frequent programming projects

will address applications of computing to problems arising from other disciplines.

200-204 Special Topics in Introductory Computer Science
1-4 credits
A course which examines special topics in computer science at the introductory level. Any current offerings follow.

200 ST: Data Visceralization: Multisensory and Embodied Techniques for Making Data

Approachable and Accessible

Fall Wirfs-Brock 4 credits
In the book Data Feminism, Catherine D’Ignazio and Lauren Klein write, “Visual things are for the eyes,

but visceralizations are representations of data that the whole body can experience, emotionally as well as

physically.” This course explores how we might use data visceralization as a technique to design intriguing

and accessible data representations. Students will explore how to engage all of our senses — including

vision, hearing, touch, taste, and smell — to convey data in an embodied way. In this project-based course,

we will consider data as a creative material for deeply engaging with the world. While developing a series

of interactive, multisensory, and participatory data representations, students will learn how to think

critically about data and its uses. The specific data sets we will engage with will be based on student

interest areas, and might include self-tracking data, data from other computer science courses, and data

from research projects happening in and around Whitman. Distribution area: none.

210 Computer Systems Fundamentals
Spring Stratton 3 credits
This course integrates key ideas from digital logic, computer architecture, compilers, and operating systems, in one

unified framework. This will be done constructively, by building a general-purpose computer system from ground

up: from the low-level details of switching circuits to the high level abstractions of modern programming languages.

In the process, we will explore software engineering and algorithmic techniques used in the design of modern

hardware and software systems. We will discuss fundamental trade-offs and future trends. Prerequisite: Computer

Science 167 or 270.

215 Introduction to Data Science
Fall, Spring Wirfs-Brock 4 credits
An introduction to the approaches and tools of exploratory data analysis and visualization. Through a series of

projects, we explore large data sets through methods like cleaning, filtering, sorting, boolean selections and merging.

As large amounts of data typically are stored in lists, we use algorithmic thinking to transform raw data into usable

form. We develop hypotheses and supporting visualizations to tell the story of the data. We learn and practice

technical communication in both oral and written form. Through a series of readings and discussions, we learn best

practices for the ethical use of data and how to identify problematic uses of data in society. May be elected as

Mathematics 215. Prerequisites: Computer Science 167 or 270; Mathematics 124 or 125.

220 Discrete Mathematics & Functional Programming
Fall Staff 3 credits
This course provides a mathematical foundation for formal study of algorithms and the theory of computing. It also

introduces functional programming, a powerful computing paradigm that is distinct from the imperative and object-

oriented paradigms introduced in Computer Science 167. Students will practice formal reasoning over discrete

structures through two parallel modes: mathematical proofs and computer programs. We will introduce sets and

lists, Boolean logic, and proof techniques. We will explore recursive algorithms and data types along with

mathematical and structural induction. We consider relations and functions as mathematical objects and develop

idioms of higher-order programming. We consider applications useful in computer science, particularly counting

sets. May be elected as Mathematics 220. Prerequisites: Computer Science 167 or 270, Mathematics 124 or 125.

255 Computer Simulation Methods

Not offered 2023-24 3 credits
From the earliest days of electronic computers, some of the most pressing applications involved not just organization

and processing of data, but digital replication of scenarios in the physical world to improve our understanding or

make decisions. Computer simulation allows us to conduct virtual experiments that would be impossible, expensive,

or unethical to conduct in the physical world, but answer critical questions that could arise from almost any

academic discipline. This course will examine a range of simulation methods, such as N-body, finite difference,

discrete event, and actor-based modeling. Students who have already completed Computer Science 270 are strongly

encouraged to concurrently enroll in Computer Science 355. Prerequisite: Computer Science 167 or 270.

267 Human-Computer Interaction

Not offered 2023-24 4 credits
How do people interact with computers? And how can we design computer systems that make people’s lives better?

Students will learn to critique user interfaces using principles based on psychological theories of perception,

memory, attention, planning, and learning. Through a semester-long team project, students will practice iterative

design including stages of contextual inquiry, task analysis, ideation, prototyping, and evaluation. We will also

explore current research on new application areas, design techniques, or interaction paradigms, as well as social

implications of computing.

270 Data Structures
Fall, Spring Staff 4 credits
This course addresses the representation, storage, access, and manipulation of data. We discuss appropriate choices

of data structures for diverse problem contexts. We consider abstract data types such as stacks, queues, maps, and

graphs, as well as implementations using files, arrays, linked lists, tree structures, heaps, and hash tables. We

analyze and implement methods of updating, sorting, and searching for data in these structures. We develop object-

oriented programming concepts such as inheritance, polymorphism, and encapsulation. We consider implementation

issues including dynamic memory management, as well as tools for programming in the large. Prerequisite:

Computer Science 167.

300-304 Special Topics in Computer Science

1-4 credits

A course which examines special topics in computer science at the intermediate level. Any current offerings follow.

300 ST: Computer Networks

Spring Davis 3 credits
The Internet is composed of a large number of heterogeneous, independently-operating computer networks

that work together to transport all sorts of data to points all over the world. The fact that it does this so well

given its complexity is a minor miracle. In this class, we’ll study the structure of these individual networks

and the Internet as a whole to figure out how this “magic” takes place. Topics include TCP/IP, protocols

and their implementations, routing, security, network architecture, DNS, peer-to-peer networking, and Wi-

Fi along with ethical and privacy issues. Prerequisite: Computer Science 270. Distribution area: none.

301 ST: Applied Algorithms

Fall Fathi 3 credits

This course addresses real-world applications of advanced graph algorithms with an emphasis on object-

oriented implementation. Students will learn advanced algorithms through map-based visualizations and

cognitive task analyses, as well as by reading and presenting research papers. Through in-class discussions,

we will explore applications of graph algorithms to topics in art and science such as literary analysis,

archeology, and bioinformatics. We will read and discuss the book Algorithms to Live By (Brian Christian

and Tom Griffiths) to consider the practical and ethical implications of algorithms. Students will undertake

a semester-long, self-designed programming project applying graph algorithms to a topic of their choice.

Prerequisite: Computer Science 270. Distribution area: none.

310 Computer Systems Programming

Fall Stratton 4 credits
How does data move from a hard drive to memory to a CPU? How does a computer deal with input from a mouse

and keyboard? How does one computer communicate with another, or many others? This class examines how

operating systems interact with computer hardware to provide higher-level programming abstractions. Students will

use the C programming language to explore topics such as processes, virtual memory, concurrency, threads, and

networking. Prerequisites: Computer Science 210 and 270.

317 Software Performance Optimization

Not offered 2023-24 3 credits

Computers do not execute programs with equal speed, even when theoretical analyses indicate that two programs

perform approximately the same amount of work. At the same time, software power efficiency affects the size of

mobile devices and the energy consumption of data centers. This course examines current trends in computer system

architecture and draws out insights for developing software that is fast and energy-efficient. Students will work

problem sets, write programs, conduct experiments, read and analyze technical articles, and carry out a team project

of their choice. Throughout the course, we shall consider how computer system designs affect program structure,

and in particular the tensions between efficiency and principled software organization. Prerequisites: Computer

Science 210 and 270.

320 Theory of Computation

Fall Staff 3 credits
Which problems can be solved computationally? Which cannot? Why? We can prove that computers can perform

certain computations and not others. This course will investigate which ones, and why. Topics will include formal

models of computation such as finite state automata, push-down automata, and Turing machines, as well as formal

languages such as context-free grammars and regular expressions. May be elected as Computer Science 320 and

must be elected as Computer Science 320 to apply toward the total credit requirement in Computer Science.

Prerequisite: Computer Science/Mathematics 220 or Mathematics 260.

327 Algorithm Design & Analysis

Spring Staff 3 credits
How can we be confident that an algorithm is correct before we implement it? How can we compare the efficiency

of different algorithms? We present rigorous techniques for design and analysis of efficient algorithms. We consider

problems such as sorting, searching, graph algorithms, and string processing. Students will learn design techniques

such as linear programming, dynamic programming, and the greedy method, as well as asymptotic, worst-case,

average-case and amortized runtime analyses. Data structures will be further developed and analyzed. We consider

the limits of what can be efficiently computed. May be elected as Mathematics 327, but must be elected as

Computer Science 327 to apply toward the total credit requirement in Computer Science. Prerequisites: Computer

Science 270; Computer Science/Mathematics 220 or Mathematics 260.

339 Operations Research

Spring Hundley 3 credits

Operations research is a scientific approach to determining how best to operate a system, usually under conditions

requiring the allocation of scarce resources. This course will consider deterministic models, including those in linear

programming (optimization) and related subfields of operations research. May be elected as Mathematics 339.

Prerequisites: Mathematics 240; Computer Science 167 or 270.

350 Mathematical Modeling and Numerical Methods

Not offered 2023-24 3 credits
This course explores the process of building, analyzing and interpreting mathematical descriptions of physical

processes. This may include theoretical models using statistics and differential equations, simulation modeling, and

empirical modeling (meaning model building from data). The course will involve some computer programming, so

previous programming experience is helpful. May be elected as Mathematics 350. Prerequisite: Mathematics 240.

355 Optimizing Simulation Methods

Not offered 2023-24 1 credit
This course extends Computer Science 255, Computer Simulation Methods, with a focus on algorithms and data

structures for improving the efficiency of computer simulations. Techniques may include Barnes-Hut spatial data

structures, Next-Reaction methods for discrete event simulations, and distributed computing. Prerequisite:

Computer Science 270. Corequisite: Computer Science 255.

360 Interactive Computer Graphics

Not offered 2023-24 3 credits
An introduction to computer graphics covering 2-D and 3-D rendering pipelines and diverse user interaction

techniques for graphics applications. Topics will include coordinate systems, geometric shapes, transformations,

projection, color, lighting, shading, data visualization, and animation. Interaction techniques may include Web

interfaces, immersive displays, vision systems, spatial interaction, music/sound, gesture, and tangible interfaces. We

will apply these topics through a combination of hands-on and written exercises and programming with a current

computer graphics library. We will read and analyze a selection of research publications that apply computer

graphics in different application domains. We will analyze the societal impacts of select applications. We will

implement and present a project that applies computer graphics and interaction techniques in a selected domain.

Prerequisite: Computer Science 270.

370 Software Design

Spring Staff 4 credits
What makes code beautiful? We consider how to design programs that are understandable, maintainable, extensible,

and robust. Through examination of moderately large programs, we will study concepts including object-oriented

design principles, code quality metrics, and design patterns. Students will learn design techniques such as Class-

Responsibility-Collaborator (CRC) cards and the Unified Modeling Language (UML), and gain experience with

tools to support large-scale software development such as a version control system and a test framework. Students

will apply these concepts, techniques, and tools in a semester-long, team software development project. Students

enrolling in Computer Science 370 also will be required to enroll in an associated laboratory course (Computer

Science 370L). Weekly laboratory sessions will include time for design critiques, code reviews, and supervised

teamwork. Corequisite: Computer Science 370L. Prerequisite: Computer Science 270.

400-404 Special Topics in Computer Science

1-4 credits

A course which examines special topics in computer science at the advanced level. Any current offerings follow.

467 Numerical Analysis

Not offered 2023-24 3 credits

An introduction to numerical approximation of algebraic and analytic processes. Topics include numerical methods

of solution of equations, systems of equations and differential equations, and error analysis of approximations. May

be elected as Mathematics 467. Prerequisite: Computer Science 167 or 270. Pre- or corequisite: Mathematics 240.

481, 482 Independent Study

Fall, Spring Staff 1-4 credits

Directed study or research in selected areas of computer science. A curriculum or project is designed by the

student(s) with the advice and consent of an instructor in the department. Inquiry may emerge from prior course

work or explore areas not covered in the curriculum. Prerequisite: consent of instructor.

495 Capstone Project I

Fall, Spring Stratton, Wirfs-Brock 2 credits
First semester of a team project integrating skills and concepts from across the computer science curriculum.

Students will develop project management and communication skills. In writing and documenting software, students

will consider their responsibilities to future users or developers. Open only to senior computer science majors.

Prerequisite: one 300-level computer science course.

496 Capstone Project II

Spring Stratton, Wirfs-Brock 2 credits
Second semester of a team project integrating skills and concepts from across the computer science curriculum.

Students will develop project management and communication skills, culminating in a public presentation. In

writing and documenting software, students will consider their responsibilities to future users or developers. All

course work will be completed by the second Friday in March. Prerequisite: Computer Science 495.

497 Advanced Project

Spring Stratton, Wirfs-Brock 1 credit
Students will individually design and implement a project of their choice as a personal integrative project. Students

may choose to implement an individual extension of their team capstone project or some other appropriate

summative and integrative project, with instructor approval. Open to all senior Computer Science majors with

instructor consent. Prerequisite: Computer Science 495. Corequisite: Computer Science 496.

498 Honors Project

Spring Stratton, Wirfs-Brock 1 credit
Students will individually design and implement a project of their choice as a personal integrative project. Students

may choose to implement an individual extension of their team capstone project or some other appropriate

summative and integrative project, with instructor approval. Students will prepare a short technical report on their

work suitable for deposit at Penrose Library. Required of and limited to senior honors candidates in computer

science. Prerequisite: Computer Science 495. Corequisite: Computer Science 496.

