
3

Rules for Finding Derivatives

It is tedious to compute a limit every time we need to know the derivative of a function.

Fortunately, we can develop a small collection of examples and rules that allow us to

compute the derivative of almost any function we are likely to encounter. Many functions

involve quantities raised to a constant power, such as polynomials and more complicated

combinations like y = (sinx)4. So we start by examining powers of a single variable; this

gives us a building block for more complicated examples.

3.1 The Power Rule

We start with the derivative of a power function, f(x) = xn. Here n is a number of

any kind: integer, rational, positive, negative, even irrational, as in xπ. We have already

computed some simple examples, so the formula should not be a complete surprise:

d

dx
xn = nxn−1.

It is not easy to show this is true for any n. We will do some of the easier cases now, and

discuss the rest later.

The easiest, and most common, is the case that n is a positive integer. To compute

the derivative we need to compute the following limit:

d

dx
xn = lim

∆x→0

(x+∆x)n − xn

∆x
.

For a specific, fairly small value of n, we could do this by straightforward algebra.
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EXAMPLE 3.1.1 Find the derivative of f(x) = x3.

d

dx
x3 = lim

∆x→0

(x+∆x)3 − x3

∆x
.

= lim
∆x→0

x3 + 3x2∆x+ 3x∆x2 +∆x3 − x3

∆x
.

= lim
∆x→0

3x2∆x+ 3x∆x2 +∆x3

∆x
.

= lim
∆x→0

3x2 + 3x∆x+∆x2 = 3x2.

The general case is really not much harder as long as we don’t try to do too much.

The key is understanding what happens when (x+∆x)n is multiplied out:

(x+∆x)n = xn + nxn−1∆x+ a2x
n−2∆x2 + · · ·++an−1x∆xn−1 +∆xn.

We know that multiplying out will give a large number of terms all of the form xi∆xj , and

in fact that i+ j = n in every term. One way to see this is to understand that one method

for multiplying out (x+∆x)n is the following: In every (x+∆x) factor, pick either the x

or the ∆x, then multiply the n choices together; do this in all possible ways. For example,

for (x+∆x)3, there are eight possible ways to do this:

(x+∆x)(x+∆x)(x+∆x) = xxx+ xx∆x+ x∆xx+ x∆x∆x

+∆xxx+∆xx∆x+∆x∆xx+∆x∆x∆x

= x3 + x2∆x+ x2∆x+ x∆x2

+ x2∆x+ x∆x2 + x∆x2 +∆x3

= x3 + 3x2∆x+ 3x∆x2 +∆x3

No matter what n is, there are n ways to pick ∆x in one factor and x in the remaining

n−1 factors; this means one term is nxn−1∆x. The other coefficients are somewhat harder

to understand, but we don’t really need them, so in the formula above they have simply

been called a2, a3, and so on. We know that every one of these terms contains ∆x to at

least the power 2. Now let’s look at the limit:

d

dx
xn = lim

∆x→0

(x+∆x)n − xn

∆x

= lim
∆x→0

xn + nxn−1∆x+ a2x
n−2∆x2 + · · ·+ an−1x∆xn−1 +∆xn − xn

∆x

= lim
∆x→0

nxn−1∆x+ a2x
n−2∆x2 + · · ·+ an−1x∆xn−1 +∆xn

∆x

= lim
∆x→0

nxn−1 + a2x
n−2∆x+ · · ·+ an−1x∆xn−2 +∆xn−1 = nxn−1.
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Now without much trouble we can verify the formula for negative integers. First let’s

look at an example:

EXAMPLE 3.1.2 Find the derivative of y = x−3. Using the formula, y′ = −3x−3−1 =

−3x−4.

Here is the general computation. Suppose n is a negative integer; the algebra is easier

to follow if we use n = −m in the computation, where m is a positive integer.

d

dx
xn =

d

dx
x−m = lim

∆x→0

(x+∆x)−m − x−m

∆x

= lim
∆x→0

1
(x+∆x)m − 1

xm

∆x

= lim
∆x→0

xm − (x+∆x)m

(x+∆x)mxm∆x

= lim
∆x→0

xm − (xm +mxm−1∆x+ a2x
m−2∆x2 + · · ·+ am−1x∆xm−1 +∆xm)

(x+∆x)mxm∆x

= lim
∆x→0

−mxm−1 − a2x
m−2∆x− · · · − am−1x∆xm−2 −∆xm−1)

(x+∆x)mxm

=
−mxm−1

xmxm
=

−mxm−1

x2m
= −mxm−1−2m = nx−m−1 = nxn−1.

We will later see why the other cases of the power rule work, but from now on we will

use the power rule whenever n is any real number. Let’s note here a simple case in which

the power rule applies, or almost applies, but is not really needed. Suppose that f(x) = 1;

remember that this “1” is a function, not “merely” a number, and that f(x) = 1 has a

graph that is a horizontal line, with slope zero everywhere. So we know that f ′(x) = 0.

We might also write f(x) = x0, though there is some question about just what this means

at x = 0. If we apply the power rule, we get f ′(x) = 0x−1 = 0/x = 0, again noting that

there is a problem at x = 0. So the power rule “works” in this case, but it’s really best to

just remember that the derivative of any constant function is zero.

Exercises 3.1.

Find the derivatives of the given functions.

1. x100 ⇒ 2. x−100 ⇒

3.
1

x5
⇒ 4. xπ ⇒

5. x3/4 ⇒ 6. x−9/7 ⇒
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3.2 Linearity of the Derivative

An operation is linear if it behaves “nicely” with respect to multiplication by a constant

and addition. The name comes from the equation of a line through the origin, f(x) = mx,

and the following two properties of this equation. First, f(cx) = m(cx) = c(mx) = cf(x),

so the constant c can be “moved outside” or “moved through” the function f . Second,

f(x + y) = m(x + y) = mx +my = f(x) + f(y), so the addition symbol likewise can be

moved through the function.

The corresponding properties for the derivative are:

(cf(x))′ =
d

dx
cf(x) = c

d

dx
f(x) = cf ′(x),

and

(f(x) + g(x))′ =
d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x) = f ′(x) + g′(x).

It is easy to see, or at least to believe, that these are true by thinking of the dis-

tance/speed interpretation of derivatives. If one object is at position f(t) at time t, we

know its speed is given by f ′(t). Suppose another object is at position 5f(t) at time t,

namely, that it is always 5 times as far along the route as the first object. Then it “must”

be going 5 times as fast at all times.

The second rule is somewhat more complicated, but here is one way to picture it.

Suppose a flatbed railroad car is at position f(t) at time t, so the car is traveling at a

speed of f ′(t) (to be specific, let’s say that f(t) gives the position on the track of the rear

end of the car). Suppose that an ant is crawling from the back of the car to the front so

that its position on the car is g(t) and its speed relative to the car is g′(t). Then in reality,

at time t, the ant is at position f(t) + g(t) along the track, and its speed is “obviously”

f ′(t) + g′(t).

We don’t want to rely on some more-or-less obvious physical interpretation to deter-

mine what is true mathematically, so let’s see how to verify these rules by computation.
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We’ll do one and leave the other for the exercises.

d

dx
(f(x) + g(x)) = lim

∆x→0

f(x+∆x) + g(x+∆x)− (f(x) + g(x))

∆x

= lim
∆x→0

f(x+∆x) + g(x+∆x)− f(x)− g(x)

∆x

= lim
∆x→0

f(x+∆x)− f(x) + g(x+∆x)− g(x)

∆x

= lim
∆x→0

(

f(x+∆x)− f(x)

∆x
+

g(x+∆x)− g(x)

∆x

)

= lim
∆x→0

f(x+∆x)− f(x)

∆x
+ lim

∆x→0

g(x+∆x)− g(x)

∆x

= f ′(x) + g′(x)

This is sometimes called the sum rule for derivatives.

EXAMPLE 3.2.1 Find the derivative of f(x) = x5 + 5x2. We have to invoke linearity

twice here:

f ′(x) =
d

dx
(x5 + 5x2) =

d

dx
x5 +

d

dx
(5x2) = 5x4 + 5

d

dx
(x2) = 5x4 + 5 · 2x1 = 5x4 + 10x.

Because it is so easy with a little practice, we can usually combine all uses of linearity

into a single step. The following example shows an acceptably detailed computation.

EXAMPLE 3.2.2 Find the derivative of f(x) = 3/x4 − 2x2 + 6x− 7.

f ′(x) =
d

dx

(

3

x4
− 2x2 + 6x− 7

)

=
d

dx
(3x−4 − 2x2 + 6x− 7) = −12x−5 − 4x+ 6.

Exercises 3.2.

Find the derivatives of the functions in 1–6.

1. 5x3 + 12x2 − 15 ⇒

2. −4x5 + 3x2 − 5/x2 ⇒

3. 5(−3x2 + 5x+ 1) ⇒

4. f(x) + g(x), where f(x) = x2 − 3x+ 2 and g(x) = 2x3 − 5x ⇒

5. (x+ 1)(x2 + 2x− 3) ⇒

6.
√

625− x2 + 3x3 + 12 (See section 2.1.) ⇒

7. Find an equation for the tangent line to f(x) = x3/4− 1/x at x = −2. ⇒
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8. Find an equation for the tangent line to f(x) = 3x2 − π3 at x = 4. ⇒

9. Suppose the position of an object at time t is given by f(t) = −49t2/10 + 5t + 10. Find a
function giving the speed of the object at time t. The acceleration of an object is the rate at
which its speed is changing, which means it is given by the derivative of the speed function.
Find the acceleration of the object at time t. ⇒

10. Let f(x) = x3 and c = 3. Sketch the graphs of f , cf , f ′, and (cf)′ on the same diagram.

11. The general polynomial P of degree n in the variable x has the form P (x) =

n
∑

k=0

akx
k =

a0 + a1x+ . . .+ anx
n. What is the derivative (with respect to x) of P ? ⇒

12. Find a cubic polynomial whose graph has horizontal tangents at (−2, 5) and (2, 3). ⇒

13. Prove that
d

dx
(cf(x)) = cf ′(x) using the definition of the derivative.

14. Suppose that f and g are differentiable at x. Show that f − g is differentiable at x using the
two linearity properties from this section.

3.3 The Produ
t Rule

Consider the product of two simple functions, say f(x) = (x2 + 1)(x3 − 3x). An obvious

guess for the derivative of f is the product of the derivatives of the constituent functions:

(2x)(3x2−3) = 6x3−6x. Is this correct? We can easily check, by rewriting f and doing the

calculation in a way that is known to work. First, f(x) = x5−3x3+x3−3x = x5−2x3−3x,

and then f ′(x) = 5x4−6x2−3. Not even close! What went “wrong”? Well, nothing really,

except the guess was wrong.

So the derivative of f(x)g(x) is NOT as simple as f ′(x)g′(x). Surely there is some

rule for such a situation? There is, and it is instructive to “discover” it by trying to do

the general calculation even without knowing the answer in advance.

d

dx
(f(x)g(x)) = lim

∆x→0

f(x+∆x)g(x+∆x)− f(x)g(x)

∆x

= lim
∆x→0

f(x+∆x)g(x+∆x)− f(x+∆x)g(x) + f(x+∆x)g(x)− f(x)g(x)

∆x

= lim
∆x→0

f(x+∆x)g(x+∆x)− f(x+∆x)g(x)

∆x
+ lim

∆x→0

f(x+∆x)g(x)− f(x)g(x)

∆x

= lim
∆x→0

f(x+∆x)
g(x+∆x)− g(x)

∆x
+ lim

∆x→0

f(x+∆x)− f(x)

∆x
g(x)

= f(x)g′(x) + f ′(x)g(x)

A couple of items here need discussion. First, we used a standard trick, “add and subtract

the same thing”, to transform what we had into a more useful form. After some rewriting,

we realize that we have two limits that produce f ′(x) and g′(x). Of course, f ′(x) and
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g′(x) must actually exist for this to make sense. We also replaced lim
∆x→0

f(x + ∆x) with

f(x)—why is this justified?

What we really need to know here is that lim
∆x→0

f(x+∆x) = f(x), or in the language

of section 2.5, that f is continuous at x. We already know that f ′(x) exists (or the whole

approach, writing the derivative of fg in terms of f ′ and g′, doesn’t make sense). This

turns out to imply that f is continuous as well. Here’s why:

lim
∆x→0

f(x+∆x) = lim
∆x→0

(f(x+∆x)− f(x) + f(x))

= lim
∆x→0

f(x+∆x)− f(x)

∆x
∆x+ lim

∆x→0
f(x)

= f ′(x) · 0 + f(x) = f(x)

To summarize: the product rule says that

d

dx
(f(x)g(x)) = f(x)g′(x) + f ′(x)g(x).

Returning to the example we started with, let f(x) = (x2+1)(x3−3x). Then f ′(x) =

(x2 + 1)(3x2 − 3) + (2x)(x3 − 3x) = 3x4 − 3x2 + 3x2 − 3 + 2x4 − 6x2 = 5x4 − 6x2 − 3,

as before. In this case it is probably simpler to multiply f(x) out first, then compute the

derivative; here’s an example for which we really need the product rule.

EXAMPLE 3.3.1 Compute the derivative of f(x) = x2
√

625− x2. We have already

computed
d

dx

√

625− x2 =
−x√

625− x2
. Now

f ′(x) = x2 −x√
625− x2

+ 2x
√

625− x2 =
−x3 + 2x(625− x2)√

625− x2
=

−3x3 + 1250x√
625− x2

.

Exercises 3.3.

In 1–4, find the derivatives of the functions using the product rule.

1. x3(x3 − 5x+ 10) ⇒

2. (x2 + 5x− 3)(x5 − 6x3 + 3x2 − 7x+ 1) ⇒

3.
√
x
√

625− x2 ⇒

4.

√
625− x2

x20
⇒

5. Use the product rule to compute the derivative of f(x) = (2x − 3)2. Sketch the function.
Find an equation of the tangent line to the curve at x = 2. Sketch the tangent line at x = 2.
⇒
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6. Suppose that f , g, and h are differentiable functions. Show that (fgh)′(x) = f ′(x)g(x)h(x)+
f(x)g′(x)h(x) + f(x)g(x)h′(x).

7. State and prove a rule to compute (fghi)′(x), similar to the rule in the previous problem.

Product notation. Suppose f1, f2, . . . fn are functions. The product of all these functions
can be written

n
∏

k=1

fk.

This is similar to the use of
∑

to denote a sum. For example,

5
∏

k=1

fk = f1f2f3f4f5

and
n
∏

k=1

k = 1 · 2 · . . . · n = n!.

We sometimes use somewhat more complicated conditions; for example
n
∏

k=1,k 6=j

fk

denotes the product of f1 through fn except for fj . For example,

5
∏

k=1,k 6=4

xk = x · x2 · x3 · x5 = x11.

8. The generalized product rule says that if f1, f2, . . . , fn are differentiable functions at x
then

d

dx

n
∏

k=1

fk(x) =
n
∑

j=1



f ′
j(x)

n
∏

k=1,k 6=j

fk(x)



 .

Verify that this is the same as your answer to the previous problem when n = 4, and write
out what this says when n = 5.

3.4 The Quotient Rule

What is the derivative of (x2 + 1)/(x3 − 3x)? More generally, we’d like to have a formula

to compute the derivative of f(x)/g(x) if we already know f ′(x) and g′(x). Instead of

attacking this problem head-on, let’s notice that we’ve already done part of the problem:

f(x)/g(x) = f(x) · (1/g(x)), that is, this is “really” a product, and we can compute the

derivative if we know f ′(x) and (1/g(x))′. So really the only new bit of information we

need is (1/g(x))′ in terms of g′(x). As with the product rule, let’s set this up and see how
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far we can get:

d

dx

1

g(x)
= lim

∆x→0

1
g(x+∆x) −

1
g(x)

∆x

= lim
∆x→0

g(x)−g(x+∆x)
g(x+∆x)g(x)

∆x

= lim
∆x→0

g(x)− g(x+∆x)

g(x+∆x)g(x)∆x

= lim
∆x→0

−g(x+∆x)− g(x)

∆x

1

g(x+∆x)g(x)

= − g′(x)

g(x)2

Now we can put this together with the product rule:

d

dx

f(x)

g(x)
= f(x)

−g′(x)

g(x)2
+ f ′(x)

1

g(x)
=

−f(x)g′(x) + f ′(x)g(x)

g(x)2
=

f ′(x)g(x)− f(x)g′(x)

g(x)2
.

EXAMPLE 3.4.1 Compute the derivative of (x2 + 1)/(x3 − 3x).

d

dx

x2 + 1

x3 − 3x
=

2x(x3 − 3x)− (x2 + 1)(3x2 − 3)

(x3 − 3x)2
=

−x4 − 6x2 + 3

(x3 − 3x)2
.

It is often possible to calculate derivatives in more than one way, as we have already

seen. Since every quotient can be written as a product, it is always possible to use the

product rule to compute the derivative, though it is not always simpler.

EXAMPLE 3.4.2 Find the derivative of
√

625− x2/
√
x in two ways: using the quotient

rule, and using the product rule.

Quotient rule:

d

dx

√
625− x2

√
x

=

√
x(−x/

√
625− x2)−

√
625− x2 · 1/(2√x)

x
.

Note that we have used
√
x = x1/2 to compute the derivative of

√
x by the power rule.

Product rule:

d

dx

√

625− x2x−1/2 =
√

625− x2
−1

2
x−3/2 +

−x√
625− x2

x−1/2.

With a bit of algebra, both of these simplify to

− x2 + 625

2
√
625− x2x3/2

.
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Occasionally you will need to compute the derivative of a quotient with a constant

numerator, like 10/x2. Of course you can use the quotient rule, but it is usually not the

easiest method. If we do use it here, we get

d

dx

10

x2
=

x2 · 0− 10 · 2x
x4

=
−20

x3
,

since the derivative of 10 is 0. But it is simpler to do this:

d

dx

10

x2
=

d

dx
10x−2 = −20x−3.

Admittedly, x2 is a particularly simple denominator, but we will see that a similar calcu-

lation is usually possible. Another approach is to remember that

d

dx

1

g(x)
=

−g′(x)

g(x)2
,

but this requires extra memorization. Using this formula,

d

dx

10

x2
= 10

−2x

x4
.

Note that we first use linearity of the derivative to pull the 10 out in front.

Exercises 3.4.

Find the derivatives of the functions in 1–4 using the quotient rule.

1.
x3

x3 − 5x+ 10
⇒ 2.

x2 + 5x− 3

x5 − 6x3 + 3x2 − 7x+ 1
⇒

3.

√
x

√
625− x2

⇒ 4.

√
625− x2

x20
⇒

5. Find an equation for the tangent line to f(x) = (x2 − 4)/(5− x) at x = 3. ⇒

6. Find an equation for the tangent line to f(x) = (x− 2)/(x3 + 4x− 1) at x = 1. ⇒

7. Let P be a polynomial of degree n and let Q be a polynomial of degree m (with Q not the
zero polynomial). Using sigma notation we can write

P =

n
∑

k=0

akx
k, Q =

m
∑

k=0

bkx
k.

Use sigma notation to write the derivative of the rational function P/Q.

8. The curve y = 1/(1 + x2) is an example of a class of curves each of which is called a witch

of Agnesi. Sketch the curve and find the tangent line to the curve at x = 5. (The word
witch here is a mistranslation of the original Italian, as described at

http://mathworld.wolfram.com/WitchofAgnesi.html

and
http://witchofagnesi.org/

⇒

3.5 The Chain Rule 65

9. If f ′(4) = 5, g′(4) = 12, (fg)(4) = f(4)g(4) = 2, and g(4) = 6, compute f(4) and
d

dx

f

g
at 4.

⇒

3.5 The Chain Rule

So far we have seen how to compute the derivative of a function built up from other

functions by addition, subtraction, multiplication and division. There is another very

important way that we combine simple functions to make more complicated functions:

function composition, as discussed in section 2.3. For example, consider
√

625− x2. This

function has many simpler components, like 625 and x2, and then there is that square root

symbol, so the square root function
√
x = x1/2 is involved. The obvious question is: can

we compute the derivative using the derivatives of the constituents 625− x2 and
√
x? We

can indeed. In general, if f(x) and g(x) are functions, we can compute the derivatives of

f(g(x)) and g(f(x)) in terms of f ′(x) and g′(x).

EXAMPLE 3.5.1 Form the two possible compositions of f(x) =
√
x and g(x) =

625 − x2 and compute the derivatives. First, f(g(x)) =
√

625− x2, and the derivative

is −x/
√

625− x2 as we have seen. Second, g(f(x)) = 625− (
√
x)2 = 625− x with deriva-

tive −1. Of course, these calculations do not use anything new, and in particular the

derivative of f(g(x)) was somewhat tedious to compute from the definition.

Suppose we want the derivative of f(g(x)). Again, let’s set up the derivative and play

some algebraic tricks:

d

dx
f(g(x)) = lim

∆x→0

f(g(x+∆x))− f(g(x))

∆x

= lim
∆x→0

f(g(x+∆x))− f(g(x))

g(x+∆x)− g(x)

g(x+∆x)− g(x)

∆x

Now we see immediately that the second fraction turns into g′(x) when we take the limit.

The first fraction is more complicated, but it too looks something like a derivative. The

denominator, g(x + ∆x) − g(x), is a change in the value of g, so let’s abbreviate it as

∆g = g(x+∆x)− g(x), which also means g(x+∆x) = g(x) + ∆g. This gives us

lim
∆x→0

f(g(x) + ∆g)− f(g(x))

∆g
.

As ∆x goes to 0, it is also true that ∆g goes to 0, because g(x+∆x) goes to g(x). So we

can rewrite this limit as

lim
∆g→0

f(g(x) + ∆g)− f(g(x))

∆g
.
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Now this looks exactly like a derivative, namely f ′(g(x)), that is, the function f ′(x) with

x replaced by g(x). If this all withstands scrutiny, we then get

d

dx
f(g(x)) = f ′(g(x))g′(x).

Unfortunately, there is a small flaw in the argument. Recall that what we mean by lim∆x→0

involves what happens when ∆x is close to 0 but not equal to 0. The qualification is very

important, since we must be able to divide by ∆x. But when ∆x is close to 0 but not equal

to 0, ∆g = g(x+∆x)) − g(x) is close to 0 and possibly equal to 0. This means it doesn’t

really make sense to divide by ∆g. Fortunately, it is possible to recast the argument to

avoid this difficulty, but it is a bit tricky; we will not include the details, which can be

found in many calculus books. Note that many functions g do have the property that

g(x + ∆x) − g(x) 6= 0 when ∆x is small, and for these functions the argument above is

fine.

The chain rule has a particularly simple expression if we use the Leibniz notation for

the derivative. The quantity f ′(g(x)) is the derivative of f with x replaced by g; this can

be written df/dg. As usual, g′(x) = dg/dx. Then the chain rule becomes

df

dx
=

df

dg

dg

dx
.

This looks like trivial arithmetic, but it is not: dg/dx is not a fraction, that is, not literal

division, but a single symbol that means g′(x). Nevertheless, it turns out that what looks

like trivial arithmetic, and is therefore easy to remember, is really true.

It will take a bit of practice to make the use of the chain rule come naturally—it is

more complicated than the earlier differentiation rules we have seen.

EXAMPLE 3.5.2 Compute the derivative of
√

625− x2. We already know that the

answer is −x/
√

625− x2, computed directly from the limit. In the context of the chain

rule, we have f(x) =
√
x, g(x) = 625 − x2. We know that f ′(x) = (1/2)x−1/2, so

f ′(g(x)) = (1/2)(625− x2)−1/2. Note that this is a two step computation: first compute

f ′(x), then replace x by g(x). Since g′(x) = −2x we have

f ′(g(x))g′(x) =
1

2
√
625− x2

(−2x) =
−x√

625− x2
.

EXAMPLE 3.5.3 Compute the derivative of 1/
√

625− x2. This is a quotient with a

constant numerator, so we could use the quotient rule, but it is simpler to use the chain
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rule. The function is (625−x2)−1/2, the composition of f(x) = x−1/2 and g(x) = 625−x2.

We compute f ′(x) = (−1/2)x−3/2 using the power rule, and then

f ′(g(x))g′(x) =
−1

2(625− x2)3/2
(−2x) =

x

(625− x2)3/2
.

In practice, of course, you will need to use more than one of the rules we have developed

to compute the derivative of a complicated function.

EXAMPLE 3.5.4 Compute the derivative of

f(x) =
x2 − 1

x
√
x2 + 1

.

The “last” operation here is division, so to get started we need to use the quotient rule

first. This gives

f ′(x) =
(x2 − 1)′x

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)

=
2x2

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)
.

Now we need to compute the derivative of x
√

x2 + 1. This is a product, so we use the

product rule:
d

dx
x
√

x2 + 1 = x
d

dx

√

x2 + 1 +
√

x2 + 1.

Finally, we use the chain rule:

d

dx

√

x2 + 1 =
d

dx
(x2 + 1)1/2 =

1

2
(x2 + 1)−1/2(2x) =

x√
x2 + 1

.

And putting it all together:

f ′(x) =
2x2

√
x2 + 1− (x2 − 1)(x

√
x2 + 1)′

x2(x2 + 1)

=

2x2
√
x2 + 1− (x2 − 1)

(

x
x√

x2 + 1
+
√
x2 + 1

)

x2(x2 + 1)
.

This can be simplified of course, but we have done all the calculus, so that only algebra is

left.
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EXAMPLE 3.5.5 Compute the derivative of

√

1 +

√

1 +
√
x. Here we have a more

complicated chain of compositions, so we use the chain rule twice. At the outermost “layer”

we have the function g(x) = 1 +

√

1 +
√
x plugged into f(x) =

√
x, so applying the chain

rule once gives

d

dx

√

1 +

√

1 +
√
x =

1

2

(

1 +

√

1 +
√
x

)

−1/2
d

dx

(

1 +

√

1 +
√
x

)

.

Now we need the derivative of

√

1 +
√
x. Using the chain rule again:

d

dx

√

1 +
√
x =

1

2

(

1 +
√
x
)

−1/2 1

2
x−1/2.

So the original derivative is

d

dx

√

1 +

√

1 +
√
x =

1

2

(

1 +

√

1 +
√
x

)

−1/2
1

2

(

1 +
√
x
)

−1/2 1

2
x−1/2.

=
1

8
√
x
√

1 +
√
x

√

1 +
√

1 +
√
x

Using the chain rule, the power rule, and the product rule, it is possible to avoid using

the quotient rule entirely.

EXAMPLE 3.5.6 Compute the derivative of f(x) =
x3

x2 + 1
. Write f(x) = x3(x2+1)−1,

then

f ′(x) = x3 d

dx
(x2 + 1)−1 + 3x2(x2 + 1)−1

= x3(−1)(x2 + 1)−2(2x) + 3x2(x2 + 1)−1

= −2x4(x2 + 1)−2 + 3x2(x2 + 1)−1

=
−2x4

(x2 + 1)2
+

3x2

x2 + 1

=
−2x4

(x2 + 1)2
+

3x2(x2 + 1)

(x2 + 1)2

=
−2x4 + 3x4 + 3x2

(x2 + 1)2
=

x4 + 3x2

(x2 + 1)2

Note that we already had the derivative on the second line; all the rest is simplification. It

is easier to get to this answer by using the quotient rule, so there’s a trade off: more work

for fewer memorized formulas.
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Exercises 3.5.

Find the derivatives of the functions. For extra practice, and to check your answers, do some of
these in more than one way if possible.

1. x4 − 3x3 + (1/2)x2 + 7x− π ⇒ 2. x3 − 2x2 + 4
√
x ⇒

3. (x2 + 1)3 ⇒ 4. x
√

169− x2 ⇒

5. (x2 − 4x+ 5)
√

25− x2 ⇒ 6.
√

r2 − x2, r is a constant ⇒

7.
√

1 + x4 ⇒ 8.
1

√

5−
√
x
. ⇒

9. (1 + 3x)2 ⇒ 10.
x2 + x+ 1

1− x
⇒

11.

√
25− x2

x
⇒ 12.

√

169

x
− x ⇒

13.
√

x3 − x2 − (1/x) ⇒ 14. 100/(100− x2)3/2 ⇒

15.
3
√

x+ x3 ⇒ 16.

√

(x2 + 1)2 +
√

1 + (x2 + 1)2 ⇒

17. (x+ 8)5 ⇒ 18. (4− x)3 ⇒

19. (x2 + 5)3 ⇒ 20. (6− 2x2)3 ⇒

21. (1− 4x3)−2 ⇒ 22. 5(x+ 1− 1/x) ⇒

23. 4(2x2 − x+ 3)−2 ⇒ 24.
1

1 + 1/x
⇒

25.
−3

4x2 − 2x+ 1
⇒ 26. (x2 + 1)(5− 2x)/2 ⇒

27. (3x2 + 1)(2x− 4)3 ⇒ 28.
x+ 1

x− 1
⇒

29.
x2 − 1

x2 + 1
⇒ 30.

(x− 1)(x− 2)

x− 3
⇒

31.
2x−1 − x−2

3x−1 − 4x−2
⇒ 32. 3(x2 + 1)(2x2 − 1)(2x+ 3) ⇒

33.
1

(2x+ 1)(x− 3)
⇒ 34. ((2x+ 1)−1 + 3)−1 ⇒

35. (2x+ 1)3(x2 + 1)2 ⇒

36. Find an equation for the tangent line to f(x) = (x− 2)1/3/(x3 + 4x− 1)2 at x = 1. ⇒

37. Find an equation for the tangent line to y = 9x−2 at (3, 1). ⇒

38. Find an equation for the tangent line to (x2 − 4x+ 5)
√

25− x2 at (3, 8). ⇒

39. Find an equation for the tangent line to
(x2 + x+ 1)

(1− x)
at (2,−7). ⇒

40. Find an equation for the tangent line to

√

(x2 + 1)2 +
√

1 + (x2 + 1)2 at (1,

√

4 +
√
5). ⇒


