So far we have seen that it sometimes helps to replace a subexpression of a function by a single variable. Occasionally it can help to replace the original variable by something more complicated. This seems like a "reverse'' substitution, but it is really no different in principle than ordinary substitution.
Example 10.2.1 Evaluate ∫√1−x2dx. Let x=sinu so dx=cosudu. Then ∫√1−x2dx=∫√1−sin2ucosudu=∫√cos2ucosudu. We would like to replace √cos2u by cosu, but this is valid only if cosu is positive, since √cos2u is positive. Consider again the substitution x=sinu. We could just as well think of this as u=arcsinx. If we do, then by the definition of the arcsine, −π/2≤u≤π/2, so cosu≥0. Then we continue: ∫√cos2ucosudu=∫cos2udu=∫1+cos2u2du=u2+sin2u4+C=arcsinx2+sin(2arcsinx)4+C. This is a perfectly good answer, though the term sin(2arcsinx) is a bit unpleasant. It is possible to simplify this. Using the identity sin2x=2sinxcosx, we can write sin2u=2sinucosu=2sin(arcsinx)√1−sin2u=2x√1−sin2(arcsinx)=2x√1−x2. Then the full antiderivative is arcsinx2+2x√1−x24=arcsinx2+x√1−x22+C. ◻
This type of substitution is usually indicated when the function you wish to integrate contains a polynomial expression that might allow you to use the fundamental identity sin2x+cos2x=1 in one of three forms: cos2x=1−sin2xsec2x=1+tan2xtan2x=sec2x−1. If your function contains 1−x2, as in the example above, try x=sinu; if it contains 1+x2 try x=tanu; and if it contains x2−1, try x=secu. Sometimes you will need to try something a bit different to handle constants other than one.
Example 10.2.2 Evaluate ∫√4−9x2dx. We start by rewriting this so that it looks more like the previous example: ∫√4−9x2dx=∫√4(1−(3x/2)2)dx=∫2√1−(3x/2)2dx. Now let 3x/2=sinu so (3/2)dx=cosudu or dx=(2/3)cosudu. Then ∫2√1−(3x/2)2dx=∫2√1−sin2u(2/3)cosudu=43∫cos2udu=4u6+4sin2u12+C=2arcsin(3x/2)3+2sinucosu3+C=2arcsin(3x/2)3+2sin(arcsin(3x/2))cos(arcsin(3x/2))3+C=2arcsin(3x/2)3+2(3x/2)√1−(3x/2)23+C=2arcsin(3x/2)3+x√4−9x22+C, using some of the work from example 10.2.1. ◻
Example 10.2.3 Evaluate ∫√1+x2dx. Let x=tanu, dx=sec2udu, so ∫√1+x2dx=∫√1+tan2usec2udu=∫√sec2usec2udu. Since u=arctan(x), −π/2≤u≤π/2 and secu≥0, so √sec2u=secu. Then ∫√sec2usec2udu=∫sec3udu. In problems of this type, two integrals come up frequently: ∫sec3udu and ∫secudu. Both have relatively nice expressions but they are a bit tricky to discover.
First we do ∫secudu, which we will need to compute ∫sec3udu: ∫secudu=∫secusecu+tanusecu+tanudu=∫sec2u+secutanusecu+tanudu. Now let w=secu+tanu, dw=secutanu+sec2udu, exactly the numerator of the function we are integrating. Thus ∫secudu=∫sec2u+secutanusecu+tanudu=∫1wdw=ln|w|+C=ln|secu+tanu|+C.
Now for ∫sec3udu: sec3u=sec3u2+sec3u2=sec3u2+(tan2u+1)secu2=sec3u2+secutan2u2+secu2=sec3u+secutan2u2+secu2. We already know how to integrate secu, so we just need the first quotient. This is "simply'' a matter of recognizing the product rule in action: ∫sec3u+secutan2udu=secutanu.
So putting these together we get ∫sec3udu=secutanu2+ln|secu+tanu|2+C, and reverting to the original variable x: ∫√1+x2dx=secutanu2+ln|secu+tanu|2+C=sec(arctanx)tan(arctanx)2+ln|sec(arctanx)+tan(arctanx)|2+C=x√1+x22+ln|√1+x2+x|2+C, using tan(arctanx)=x and sec(arctanx)=√1+tan2(arctanx)=√1+x2. ◻
Exercises 10.2
Find the antiderivatives.
Ex 10.2.1 ∫cscxdx (answer)
Ex 10.2.2 ∫csc3xdx (answer)
Ex 10.2.3 ∫√x2−1dx (answer)
Ex 10.2.4 ∫√9+4x2dx (answer)
Ex 10.2.5 ∫x√1−x2dx (answer)
Ex 10.2.6 ∫x2√1−x2dx (answer)
Ex 10.2.7 ∫1√1+x2dx (answer)
Ex 10.2.8 ∫√x2+2xdx (answer)
Ex 10.2.9 ∫1x2(1+x2)dx (answer)
Ex 10.2.10 ∫x2√4−x2dx (answer)
Ex 10.2.11 ∫√x√1−xdx (answer)
Ex 10.2.12 ∫x3√4x2−1dx (answer)